
Magnitude Simba SDK

Developer Guide Using SQLEngine
Version 10.3.0
January 2024

Copyright

This document was released in January 2024.

Copyright ©2014–2024 Magnitude Software, Inc., an insightsoftware company. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written
permission from Magnitude, Inc.

The information in this document is subject to change without notice. Magnitude, Inc. strives to keep this
information accurate but does not warrant that this document is error-free.

Any Magnitude product described herein is licensed exclusively subject to the conditions set forth in
your Magnitude license agreement.

Simba, the Simba logo, SimbaEngine, and Simba Technologies are registered trademarks of Simba
Technologies Inc. in Canada, the United States and/or other countries. All other trademarks and/or
servicemarks are the property of their respective owners.

All other company and product names mentioned herein are used for identification purposes only and
may be trademarks or registered trademarks of their respective owners.

Information about the third-party products is contained in a third-party-licenses.txt file that is packaged
with the software.

Contact Us

Magnitude Software, Inc.

www.magnitude.com

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
2

http://www.magnitude.com/
http://www.magnitude.com/

About This Guide

Purpose

This guide explains how to use the Magnitude Simba SDK to document what
SQL grammar the JSQLC++ engine supports.

Audience

The guide is intended for developers who have created a connector with the Simba
SDK. This guide is also intended for end users of the Simba SDK.

Knowledge Prerequisites

To use the Simba SDK, the following knowledge is helpful:

l Familiarity with the platform on which you are using the Simba SDK.
l Ability to use the data store to which the Simba SDK is connecting.
l An understanding of the role of ODBC or JDBC technologies and driver
managers in connecting to a data store.

l Experience creating and configuring ODBC or JDBC connections.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
3

http://www.magnitude.com/

Variables Used in this Document

The following variables are used in this document:

Variable Description

[DRIVER_NAME] The name of your connector, as used in Windows registry
keys and names of configuration files.

[INSTALL_DIR] Installation directory for the Simba SDK.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
4

http://www.magnitude.com/

Contents

Contents

Introducing the Simba SDK 9
Creating a Custom Connector with the Simba SDK 9

Example - Build an ODBC Connector for a SQL-Capable Data Store 10

Example - Build an ODBC Connector for a non-SQL-Capable Data Store 13

Example - Build a Client/Server Solution 14

Implementation Options 16

Library Components 22

Sample Connectors and Projects 26

Building Blocks for a DSI Implementation 29

Getting Started 33

Frequently Asked Questions 34

Core Features 38
Fetching Metadata for Catalog Functions 38

Adding Custom Metadata Columns 42

Overriding the Value of Default Properties 45

Implementing Logging 48

Using SQL Engine Properties 52

Adding Custom Connection and Statement Properties 56

Handling Connections 58

Creating and Using Dialogs 62

Canceling Operations 64

Handling Transactions 65

Bulk Fetch in the C++ SDK 71

Parsing ODBC and JDBC Escape Sequences 93

Step 1: Implement Your Custom IReplacer 99

Step 2: Create an Instance of ODBCEscaper 102

Step 3: Ensure Additional Requirements are Met 103
Native Syntax Queries 104

Native Value Expressions 105

Errors, Exceptions, and Warnings 107
Handling Errors and Exceptions 107

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
5

http://www.magnitude.com/

Posting Warning Messages 110

Including Error Message Files 112

Localizing Messages 115

Multithreading 120
Using the Thread Class (C++ only) 120

Using the ThreadPool Class 120

Asynchronous ODBC Support 121

Critical Section Locks 123

Concurrency Support 124

API Overview 126
DSI API 126

DSI API Extensions 128

API Overview 130

Lifecycle of DSI Objects 135

Working With the Java API 136

Data Types 146
SQL Data Types in the C++ SDK 146

Date, Time and DateTime Types 149

Example: Variable-Length Data 151
SQL DataTypes in the Java SDK 152

Interval Conversions 154

Adding Custom SQLDataType 156

ODBC Custom C Data Types 162

Simba SQLEngine 165
Simba SQLEngine Architecture 165

Optimizing Queries with the Simba SQLEngine 167

Collaborative Query Execution 168

Statements 177

Boolean 177

Query Operations and Relational Expressions 177

Values 178
SQL Engine Memory Management 249

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
6

http://www.magnitude.com/

Data Manipulation Language (DML) 256

Data Definition Language (DDL) 269

Add Additional Types (Optional) 273
Support for Indexes 287

Sample Index Implementation 303

Custom Scalar and Aggregate Functions 315

Stored Procedures 317

Create Table As Select (CTAS) 318

Specifications 320
Supported Platforms 320

Supported ODBC/SQL Functions 321

Supported SQL Conformance Level 324

Methods 326
IStatement::ExecuteBatch() 326

Compiling Your Connector 329
Upgrading Your Makefile to 10.1 329

C++ on Windows 340

C# on Windows 344

C# on Linux, Unix, and macOS 347

Java on Windows 347

C++ on Linux, Unix, and macOS 350

Productizing Your Connector 356
Packaging Your Connector 356

Adding a DSN Configuration Dialog 363

Rebranding Your Connector 364

Using INI Files for Connector Configuration on Windows 364

Logging to Event Tracing for Windows (ETW) 367

Testing your DSII 381
Testing OnWindows 381

Testing On Linux, Unix, and MacOS 384

Driver Manager Encodings on Linux, Unix, and MacOS 386

Solving Common Problems 387

Error Messages Encountered During Development 390

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
7

http://www.magnitude.com/

Contact Us 393

Third-Party Trademarks 394

Third Party Licenses 395

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
8

http://www.magnitude.com/

Introducing the Simba SDK

The Simba Software Development Kit (SDK) is a collection of database access tools
packaged in a flexible, reusable set of components. These components are used to
create custom database connectors for any data store, even if the data store is not
SQL-capable. Connectors can be built to access both local and remote data stores.

This guide introduces the components of the Magnitude Simba SDK and explains how
you can use them to create custom connectors for ODBC, JDBC, OLE DB and
ADO.net applications.

Note:

This guide explains how to build a connector for data stores that do not support
SQL. If you want to build a connector for data stores that support SQL, see
Developing Connectors for SQL-capable Data Stores.

You may find the HTML version of this guide easier to use. See Developing
Connectors for Data Stores Without SQL.

Note:

This guide explains how to build a connector for data stores that support SQL.
If you want to build a connector for data stores that do not support SQL, see
Developing Connectors for Data Stores Without SQL.

You may find the HTML version of this guide easier to use. See Developing
Connectors for SQL-capable Data Stores.

Creating a Custom Connector with the Simba SDK

The components of the Simba SDK implement all the required functionality of ODBC,
JDBC, OLE DB, and ADO.net, as well as handling session management, state
management, data conversion, and error checking. These components provide an
abstraction layer to insulate your underlying connector functionality from any changes
to data access standards. By basing a custom connector on the Simba SDK, you can
leverage the experience of leaders in data connectivity.

For data stores that do not support SQL, the Simba SDK provides an SQL parser and
an execution engine to translate between SQL commands and your custom datastore
API.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
9

Introducing the Simba SDK

http://cdn.simba.com/products/SEN/doc/development_guides/sql
http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/sql
http://cdn.simba.com/products/SEN/doc/development_guides/sql
http://www.magnitude.com/

For data stores requiring remote deployment, the Simba SDK allows you to re-build
your existing connector into a server for a client/ server deployment. This allows you to
build your connector as a server that reside near data source, then deploy an ODBC or
a JDBC client that handles communication with the end user's application. For more
information about client-server deployment, see the SimbaClientServer User Guide at
http://www.simba.com/resources/sdk/documentation/.

Data Store Interface Implementation (DSII)

To write a custom connector using the Simba SDK, you write a component called the
"DSI implementation" to access your data store. You then link this component with the
Simba SDK components, which takes care of meeting the data access standards, and
optionally converting SQL commands to commands that your data store can
understand. The result is a shared object: a .dylib, .jar, or .dll, .so file, depending
on your development platform. Applications, such as Tableau or Microsoft Excel, use
this shared object to access your data store, even if your data store is not SQL-
enabled.

Example - Build an ODBC Connector for a SQL-Capable Data Store

The easiest custom ODBC connector you can build with the Simba SDK is a
standalone connector connecting to an SQL-capable data store. In this configuration,
the application (such as Tableau or Excel) creates SQL queries and sends them to the
ODBC connector. The ODBC connector can choose to modify these queries, then
sends them to the data store. The data store executes the SQL queries and creates a
result set. Finally, the ODBC connector moves the result set from the data store back
to the application.

This flow of control is illustrated below:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
10

Introducing the Simba SDK

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Note:

The Simba SDK provides a similar solution for JDBC, OLE DB, and ADO.net
applications.

The following sections describe the components shown in the above diagram.

SimbaODBC Component

For data stores that are SQL-capable, your custom ODBC connector is composed of
the SimbaODBC component and your DSI implementation. The SimbaODBC
component implements most of the connector functionality, including:

l session and statement management
l abstracting and implementing the low-level requirements of the ODBC API
l error checking

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
11

Introducing the Simba SDK

http://www.magnitude.com/

Note:

When changes are made to the ODBC API, or when applications change how
they use the ODBC API, the Simba SDK incorporates these changes
transparently. As a result, connectors based on the Simba SDK can handle
these changes without code rewrites.

The Data Store Interface (DSI)

The data store interface, or DSI, defines a generic view of an SQL database that is
independent of the data access standards (ODBC, JDBC, ADO.NET and OLE DB).
The Simba SDK translates the ODBC, JDBC, ADO.NET and OLE DB interfaces to the
DSI in C++, Java, or C#. By writing code to map from the DSI to your data store, you
are creating a connector that can use one of these standard interfaces.

Note:

l The DSI API is object-oriented and simpler to use than the industry-
standard interfaces, making it easier to translate standard APIs to your
custom data store.

l The DSI API provides a consistent API for all the standards it supports:
ODBC, JDBC, ADO.NET or OLE DB. This makes creating connectors for
different standards much easier, because you can re-use your
knowledge.

Your DSI Implementation (DSII)

The SimbaODBC component uses the data store interface, or DSI, to communicate
with the your DSI implementation. The DSI interface is common to all Simba SDK
components that communicate with customer code. You write your DSI
implementation (DSII) to connect directly to your data store and translate its interface
to the DSI API.

Note:

Every DSII is custom designed for a specific data store and that data store's
interface.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
12

Introducing the Simba SDK

http://www.magnitude.com/

Example - Build an ODBC Connector for a non-SQL-Capable Data
Store

Many data stores, like Big Data, object oriented, and XML data stores, do not
understand SQL. To create a custom connector for these data stores, use the same
components shown above, with the addition of the Simba SQLEngine:

Note:

The Simba SDK provides a similar solution for JDBC applications.

For data stores that are not SQL-capable, your custom ODBC connector is composed
of the SimbaODBC component, the SQL Engine, and your DSI implementation. The
Simba SQL Engine provides the SQL processing required to support ODBC
interfaces.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
13

Introducing the Simba SDK

http://www.magnitude.com/

Simba SQLEngine

The Simba SQLEngine is a self-contained SQL parser and execution engine. It
consumes SQL-92 queries, parses them, creates an optimized execution plan, allows
your DSI implementation to take over part or all of the execution, and then executes
the plan against the DSI implementation.

Example - Build a Client/Server Solution

Once you have created a DSI implementation and built a custom connector, either for
a SQL-enabled or non-SQL-enabled data store, you can rebuild your DSI
implementation into a client/server solution. You can do this without making any
changes to the code - simply link your DSI implementation to the Simba Server to
provide remote data access:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
14

Introducing the Simba SDK

http://www.magnitude.com/

The following sections describe the components shown in the above diagram.

Simba Client/Server protocol

The Simba Client/Server protocol is a network protocol that works on any network to
provide remote access to a DSI implementation. Simba Server translates the Simba
Client/Server protocol to the DSI API.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
15

Introducing the Simba SDK

http://www.magnitude.com/

Note:

l A client/server deployment lets you locate your custom connector close
to the data store, while the client applications are located with your users.

l Both the ODBC and the JDBC client can talk to the same SimbaServer.
That means you can write one custom connector, built it as a server, then
use it to service SQL requests from both ODBC and JDBC applications.

SimbaClient for ODBC and Simba Client for JDBC

The ODBC and JDBC clients are shared objects provided by Simba. These clients use
the Simba Client/Server protocol to handle communication between the application
and Simba Server.

Related Topics

Simba SDK Usage Scenarios

Build a Connector in 5 Days

Simba SDK FAQ

Implementation Options

You can use the Simba SDK to build custom connectors for ODBC, JDBC, OLE DB,
and ADO.Net applications. Depending on the interface standard that your connector
supports, you can develop the connector in C++, Java, or C#.

The Simba SDK provides many different implementation options for developing your
custom connector. For example, you can develop an ODBC connector in C++ using
the DSI API. You can also develop an ODBC connector in Java using the Java DSI
API and the JNI bridge. Or, you can develop a custom JDBC connector for data stores
that do not support SQL, and implement the connector for either a local or a client-
server deployment.

Note:

This guide explains how to build a connector for data stores that do not support
SQL. If you want to build a connector for data stores that support SQL, see
Developing Connectors for SQL-capable Data Stores.

You may find the HTML version of this guide easier to use. See Developing
Connectors for Data Stores Without SQL.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
16

Introducing the Simba SDK

http://www.simba.com/drivers/simba-engine-sdk/#usage
http://www.simba.com/drivers/simba-engine-sdk/#documentation
http://www.simba.com/resources/sdk/faq/
http://cdn.simba.com/products/SEN/doc/development_guides/sql
http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://www.magnitude.com/

Note:

This guide explains how to build a connector for data stores that support SQL.
If you want to build a connector for data stores that do not support SQL, see
Developing Connectors for Data Stores Without SQL.

You may find the HTML version of this guide easier to use. See Developing
Connectors for SQL-capable Data Stores.

The following table shows the possible types of custom connectors you can build with
the Simba SDK, and the components and APIs required for each. The table includes
options for local and remote (client/server) deployments, and for SQL-enabled and
non-SQL-enabled data stores. The Sample Connector(s) column lists the sample
connector(s) that provide a working example of your chosen implementation option.

Note:

l Every connector, except for those written in C#, is supported on
Windows, Unix/Linux, and macOS. C# is supported on Windows.

l The sample connectors are included with the Simba SDK in the
folderC:\Simba
Technologies\SimbaEngineSDK\10.0\Examples\Source.

Connector
Type Language

Data
Store
Type

Sample Connector
(s)

Simba SDK
Component
(s)

Custom
ODBC
connector

C++ SQL, Local Ultralight DSI API

Custom
ODBC
connector

C++ SQL,
Remote

Ultralight +
SimbaServer DSI API

Custom
ODBC
connector

C++
Not SQL
capable,
Local

Quickstart DSI API +
SQL Engine

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
17

Introducing the Simba SDK

http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/sql
http://cdn.simba.com/products/SEN/doc/development_guides/sql
http://www.magnitude.com/

Connector
Type Language

Data
Store
Type

Sample Connector
(s)

Simba SDK
Component
(s)

Custom
ODBC
connector

C++
Not SQL
capable,
Remote

Quickstart +
SimbaServer

DSI API +
SQL Engine

Custom
ODBC
connector

Java SQL, Local JavaUltraLight Java DSI API
+ JNI DSI

Custom
ODBC
connector

Java SQL,
Remote

JavaUltraLight +
SimbaServer

Java DSI API
+ JNI DSI

Custom
ODBC
connector

Java
Not SQL
capable,
Local

JavaQuickstart or
JavaQuickJSON

Java DSI API
+ JNI DSI +
SQL Engine

Custom
ODBC
connector

Java
Not SQL
capable,
Remote

JavaQuickstart +
SimbaServer

Java DSI API
+ JNI DSI +
SQL Engine

Custom
ODBC
connector

C# SQL, Local DotNetUltraLight .NET DSI API
+ CLI DSI

Custom
ODBC drive C# SQL,

Remote
DotNetUltraLight +
SimbaServer

.NET DSI API
+ CLI DSI

Custom
ODBC
connector

C#
Not SQL
capable,
Local

DotNetQuickstart
.NET DSI API
+ CLI DSI +
SQL Engine

Custom
ODBC
connector

C#
Not SQL
capable,
Remote

DotnetQuickstart +
SimbaServer

.NET DSI API
+ CLI DSI +
SQL Engine

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
18

Introducing the Simba SDK

http://www.magnitude.com/

Connector
Type Language

Data
Store
Type

Sample Connector
(s)

Simba SDK
Component
(s)

Custom
JDBC
connector

Java SQL, Local JavaUltraLight Java DSI API

Custom
JDBC
connector

Java SQL,
Remote

JavaUltraLight +
SimbaServer

Java DSI API
+ JNI DSI

Custom
JDBC
connector

Java
Not SQL
capable,
Local

JavaQuickJson Java DSI API

Custom
JDBC
connector

Java
Not SQL
capable,
Remote

JavaQuickstart +
SimbaServer

Java DSI API
+ JNI DSI +
SQL Engine

Custom
ADO.NET
connector

C# SQL, Local DotNetUltraLight .NET DSI API

Custom OLE
DB
connector

C++
Not SQL
capable,
Local

Quickstart DSI API +
SQL Engine

The following section provides more details about the information in the table above.

Options for Programming Languages

The programming language you use to write the DSII depends partly on the interface
standard you need to support. The supported combinations of programming language
and interface standard are shown in the table above.

Example:

l To write a JDBC connector that is deployed locally, you must write the DSII in
Java.

l To write an ODBC connector that is deployed locally, you can write the DSII in
C++, Java, or C#. If you write the DSI in Java, you need to link with a JNI bridge.
If you write the DSI in C#, you need to link with a CLI bridge.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
19

Introducing the Simba SDK

http://www.magnitude.com/

Programming Languages for ODBC applications

To build a local connector for ODBC applications, you can write your DSII in the
following languages:

l C++ (the most common choice)
l C# with a CLI bridge
l Java with a JNI bridge

Programming Language for JDBC Applications

To build a local connector for JDBC applications, you must write your DSII in Java. Or,
you can deploy the JDBC client to support the JDBC applications and implement the
SimbaServer in Java, C++, or C#.

Programming Language for ADO.NET Applications

To build a local connector for ADO.NET applications, you must write your DSII in C#.

Supported Combination of Components

This section explains the different ways you can leverage the Simba SDK components
in each of the supported programming languages.

C++ Development

For C++ connector development, you have the following options:

l Use the DSI API, build as an ODBC connector (connected locally to your data
store) and link your DSII to SimbaODBC.

l Build as a SimbaServer connector, supporting remote connections from
SimbaClients for JDBC and ODBC. Link your C++ DSII upwards to SimbaServer
via the DSI API.

In the above cases, you can link against the C++ SQLEngine to access non-relational
data stores.

Java Development

For Java connector development, you have the following options:

l Use the Java DSI API, build as a JDBC connector (connected locally to your data
store) and link your DSII with SimbaJDBC.

l Build as an ODBC connector (connected locally to your data store) using the
Java DSI API and link via the C++ to Java Bridge to SimbaODBC.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
20

Introducing the Simba SDK

http://www.magnitude.com/

l Build as a SimbaServer connector, supporting remote connections from the
JDBC and ODBC clients. Link your Java DSII upward via the Java DSI API and
C++ to Java Bridge to SimbaServer.

In the above cases, you can link to the Java SQLEngine to access non-relational data
stores.

C# Development

For C# development, you have the following options:

l Use the DotNet DSI API, build as an ADO.NET connector (connected locally to
your data store) and link your DSII with Simba.NET.

l Use the DotNet DSI API, build as an ODBC connector (connected locally to your
data store) and link via the C++ to C# Bridge to SimbaODBC.

l Build as a SimbaServer connector, supporting remote connections from the
JDBC and ODBC clients. Link your DotNet DSII upward via the DotNet DSI API
and C++ to C# Bridge to SimbaServer.

Options for Deployment

The Simba SDK provides you a number of different optional components for building
and deploying a custom connector for a wide variety of solutions.

SQL Engine

If your data store is SQL-capable, you do not need to use the SQLEngine. If your data
store is not SQL-capable, link your connector to the Simba SQLEngine libraries to
provide the SQL processing needed by ODBC or JDBC. The SQL Engine is available
in the C++ and Java SDKs.

Local Deployments

Local deployments are typically used in the following scenarios:

l Client applications access a database that runs on each user’s machine.
For example, an ODBC connector might support a client management database
where each user performs analysis of their own, local data.

l You have already configured your database for network access and some
component of your software is already installed on user machines. Your new
connector will allow other, general-purpose client applications to access the
same connection to your database that your own client application uses.

l You are in the early stages of testing your connector and as a developer, you are
accessing a local instance of your database. You will eventually change the
compilation options to link to the SimbaServer libraries, but there will be no
changes needed to your DSI implementation to do this.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
21

Introducing the Simba SDK

http://www.magnitude.com/

Remote (Client/Server) Deployments

Client-Server deployments are best when software runs on a server and users access
it from their own machines. Your custom connector, using SimbaServer, runs on the
network server. SimbaClient is installed on user machines to allow applications such
as Excel and Tableau to access your remote data store.

Related Topics

Introducing the Simba SDK

Simba SDK FAQ

Library Components

This section introduces the components comprising the Simba SDK.

Note:

This guide explains how to build a connector for data stores that do not support
SQL. If you want to build a connector for data stores that support SQL, see
Developing Connectors for SQL-capable Data Stores.

You may find the HTML version of this guide easier to use. See Developing
Connectors for Data Stores Without SQL.

Note:

This guide explains how to build a connector for data stores that support SQL.
If you want to build a connector for data stores that do not support SQL, see
Developing Connectors for Data Stores Without SQL.

You may find the HTML version of this guide easier to use. See Developing
Connectors for SQL-capable Data Stores.

SimbaODBC (the "C++ SDK")

SimbaODBC provides a complete ODBC 3.80 interface and all of the processing
required to meet the ODBC 3.80 specification. It is the connection between your
custom DSI implementation and ODBC applications such as Tableau and Microsoft
Excel.

Your custom ODBC connector is composed of the SimbaODBC component and your
DSI implementation. The SimbaODBC component implements most of the connector
functionality, including:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
22

Introducing the Simba SDK

http://www.simba.com/resources/sdk/faq/
http://cdn.simba.com/products/SEN/doc/development_guides/sql
http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/sql
http://cdn.simba.com/products/SEN/doc/development_guides/sql
http://www.magnitude.com/

l session and statement management
l abstracting and implementing the low-level requirements of the ODBC API
l error checking

Tip:

When changes are made to the ODBC API or the way the standard is used by
applications, Simba incorporates these changes in a manner that is
transparent to your DSI implementation.

For information about the Simba SDK C++ API method calls, see the Simba SDK C++
API Reference at https://www.simba.com/docs/SDK/SimbaEngine_C++_API_
Reference.

Simba OLE DB

This component is part of the C++ SDK. SimbaOLEDB provides interfaces and all the
processing required to meet the OLE DB specification. It is the connection between
your custom DSI implementation and common OLE DB reporting applications such as
Microsoft SQL Server Analysis Services.

SimbaJDBC (the "Java SDK")

SimbaJDBC provides complete interfaces for JDBC 4.0, JDBC 4.1, and JDBC 4.2, as
well as all of the processing required to meet these specifications. It is the connection
between your custom DSI implementation and common JDBC reporting applications.

For information about the Simba SDK Java API method calls, see the SimbaSDK Java
API Reference at https://www.simba.com/docs/SDK/SimbaEngine_Java_API_
Reference.

Simba.NET

Simba.NET provides a complete ADO.NET interface and all the processing required to
meet the ADO.NET specification. It is the connection between your custom DSI
implementation and common ADO.NET reporting applications such as Microsoft SQL
Server Analysis Services.

The Data Store Interface (DSI)

The data store interface, or DSI, defines a generic view of an SQL database that is
independent of the industry standards for data access, such as ODBC, JDBC,
ADO.NET and OLE DB. The Simba SDK translates the ODBC, JDBC, ADO.NET and
OLE DB interfaces to the DSI in C++, Java, or C#. By writing code to map from the DSI
to your data store, you are creating a connector that can use one of these standard
interfaces.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
23

Introducing the Simba SDK

https://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference
https://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference
https://www.simba.com/docs/SDK/SimbaEngine_Java_API_Reference
https://www.simba.com/docs/SDK/SimbaEngine_Java_API_Reference
http://www.magnitude.com/

The DSI API is object-oriented and simpler to use than the industry standard
interfaces. This makes it easier to write a DSI implementation that will translate to your
custom data store. Also, because the DSI API provides a consistent API whether you
are implementing ODBC, JDBC, ADO.NET or OLE DB, it is easier to re-use your
knowledge when creating a connector for a different industry standard.

The Data Store Interface (DSI)

The data store interface, or DSI, defines a generic view of an SQL database that is
independent of the industry standards for data access, such as ODBC, JDBC,
ADO.NET and OLE DB. The Simba SDK translates the ODBC, JDBC, ADO.NET and
OLE DB interfaces to the DSI in C++, Java, or C#. By writing code to map from the DSI
to your data store, you are creating a connector that can use one of these standard
interfaces.

Simba SQLEngine

You can use the SQL Engine to create a custom ODBC or JDBC connector that allows
SQL-enabled applications to access non-SQL-capable data stores. The Simba
SQLEngine is a self-contained SQL parser and execution engine. It consumes SQL-
92 queries, parses them, creates an optimized execution plan, allows your DSI
implementation to take over part or all of the execution, and then executes the plan
against the DSI implementation.

It is available in the Java and the C++ SDKs.

Simba Client/Server

Simba Client/Server allows remote access to your data store. You link the
SimbaServer component with your DSII to create a custom connector than can accept
requests from SimbaClient. You deploy SimbaClient with the application to send
requests to the remote connector.

SimbaServer is most frequently used as a stand-alone executable, although it can be
set up as a DLL or shared object under another server.

The DSI implementation used with SimbaServer can choose to include the Simba
SQLEngine. It can be written to perform a wide range of functionality including SQL
query processing with Simba SQLEngine, concentrating client requests through one
executable, aggregating data stores, or controlling data access through role-based
permissions. There are many possibilities for using SimbaServer as an intermediate
processing step in a larger system.

The SimbaServer can be written in C++, or written in Java including the JNI Server.
For more information see the SimbaClient/Server Developer Guide.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
24

Introducing the Simba SDK

http://www.magnitude.com/

SimbaClient for ODBC

SimbaClient for ODBC is an ODBC connector DLL or shared object that can connect
to SimbaServer. It includes SimbaODBC and a DSI implementation that
communicates via the Simba Client/Server protocol to SimbaServer. Since any
SQLEngine in the stack will be on the server side, there is no need for Simba
SQLEngine in this connector. This is a completely generic ODBC connector that, when
queried, reports the capabilities of the database that is connected to SimbaServer.

Note:

SimbaClient for ODBC is provided by Simba, and is ready to deploy with no
additional development effort required.

SimbaClient for JDBC

SimbaClient for JDBC is a JDBC connector packaged as a .jar file so you can install it
in an end user’s client-side Java Run Time Environment. SimbaClient for JDBC
includes the equivalent of SimbaODBC and custom Java code that communicates via
the Simba Client/Server protocol with SimbaServer.

Note:

SimbaClient for JDBC is provided by Simba, and is ready to deploy with no
additional development effort required.

C++ to Java Bridge (JNI DSI)

This component of the Simba SDK allows you to write the DSII in Java, then link to
SimbaODBC or SimbaServer (including Simba SQLEngine) to create an ODBC
connector.

C++ to C# Bridge (CLI DSI)

This component of the Simba SDK allows you to write the DSII in C#, then link to
SimbaODBC or SimbaServer (including Simba SQLEngine) to create an ODBC
connector.

Sample Connectors

The Simba SDK includes a number of sample connectors and sample connector
projects to help you get started quickly with your custom ODBC or JDBC connector.
For more information on sample connectors, see Sample Connectors and Projects.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
25

Introducing the Simba SDK

http://www.magnitude.com/

Related Topics

Simba SDK C++ API Reference

Simba SDK Java API Reference

Simba SDK FAQ

Sample Connectors and Projects

The Simba SDK includes a number of sample connectors and sample connector
projects to help you get started quickly with your custom ODBC or JDBC connector.
The compiled C++ sample connectors are in the Examples\Builds\Bin folder of
your Simba SDK installation directory, the compiled Java sample connectors are in
Examples\Builds\Lib, and the sample connector projects are in
Examples\Source.

Note:

This guide explains how to build a connector for data stores that do not support
SQL. If you want to build a connector for data stores that support SQL, see
Developing Connectors for SQL-capable Data Stores.

You may find the HTML version of this guide easier to use. See Developing
Connectors for Data Stores Without SQL.

Note:

This guide explains how to build a connector for data stores that support SQL.
If you want to build a connector for data stores that do not support SQL, see
Developing Connectors for Data Stores Without SQL.

You may find the HTML version of this guide easier to use. See Developing
Connectors for SQL-capable Data Stores.

Getting Started with the Sample Connector Projects

The sample connector projects are a great way to get started developing your custom
connector. Each sample connector is accompanied by a 5-Day Guide, which walks
you through the steps of building, configuring, and customizing the project.

For information on how to use the sample connector projects, see 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
26

Introducing the Simba SDK

https://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference
https://www.simba.com/docs/SDK/SimbaEngine_Java_API_Reference
http://www.simba.com/resources/sdk/faq/
http://cdn.simba.com/products/SEN/doc/development_guides/sql
http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/sql
http://cdn.simba.com/products/SEN/doc/development_guides/sql
http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

The following sections describe each of the sample connector projects and sample
connectors.

Note:

Although this guide explains how to build a connector that does not use the
SQL Engine, information on using the SQL Engine is included in this section for
reference.

Quickstart Sample Connector

C++ Not SQL-Capable ODBC

Quickstart is a C++ sample DSI implementation of an ODBC connector that reads text
files in tabbed Unicode text format. This is not a SQL aware data source, so the Simba
SQLEngine component is employed to perform the necessary SQL processing. This
sample’s purpose is to provide a simple, working connector that you can copy and
transform into a connector that accesses your non-SQL data store. An ODBC
configuration DLL is included.

The 5-Day Guide for the Quickstart sample connector project is located at 5 Day
Guides at http://www.simba.com/resources/sdk/documentation/ under the section
"Build a C++ ODBC Connector in 5 Days". Select one of the guides for a non-SQL-
based data source.

DotNetQuickstart Sample Connector

C# Not SQL-Capable ODBC

DotNetQuickstart is a C# sample DSI implementation that is the same as the
Quickstart sample above, except that it is written in C# using Simba’s C++ to C# bridge
API (also referred to as the CLIDSI API). See the document, “Build a C# ODBC
Connector in 5 Days” for a step-by-step walk-through of the process of creating a
custom ODBC connector using C#.

JavaQuickstart Sample Connector

Java Not SQL-CapableODBC

JavaQuickstart is a Java sample DSI implementation that is the same as the
Quickstart sample, except that it is written in Java using Simba’s C++ to Java bridge
API (also referred to as the JNIDSI API). See the document “Build a Java ODBC
Connector in 5 Days” for a step-by-step walk-through of the process of creating a
custom ODBC connector using Java.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
27

Introducing the Simba SDK

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Ultralight Sample Connector

C++ SQL-CapableODBC

Ultralight is a sample connector that illustrates how to build a DSII for a database that
already supports SQL and therefore does not require the SQLEngine component.

The Ultralight example does not truly support SQL; rather, it simply looks for keywords
in the query and returns a hardcoded result set. Nevertheless, this is sufficient to show
all the necessary building blocks and provide a placeholder where your real SQL
processing and result set generation could take place.

The 5-Day Guide for the Ultralight sample connector project is located at 5 Day Guides
at http://www.simba.com/resources/sdk/documentation/ under the section "Build a
C++ ODBC Connector in 5 Days". Select one of the guides for a SQL-based data
source.

DotNetUltralight Sample Connector

C# SQL-CapableODBC

DotNetUltralight is a C# sample DSI implementation that is the same as the Ultralight
sample above, except that it is written in C#. DotNetUltralight can be built using either
Simba.ADO.NET or using Simba’s C++ to C# bridge API (also referred to as the
CLIDSI API). When using Simba.ADO.NET, the resulting connector will be written
entirely in C#, providing an ADO.NET interface. When using Simba’s C++ to C# bridge
API, the resulting connector will be a mixture of C# and C++, providing an ODBC
interface or SimbaServer executable for use with any of the SimbaClient connectors.

JavaUltralight Sample Connector

Java SQL-Capable JDBC ODBC

JavaUltralight is a Java sample DSI implementation that is the same as the Ultralight
sample above, except that it is written in Java. JavaUltralight can be built using either
SimbaJDBC or using Simba’s C++ to Java bridge API (also referred to as the JNIDSI
API). When using SimbaJDBC, the resulting connector will be written entirely in Java,
providing a JDBC 4.0, 4.1, or 4.2 interface. When using Simba’s C++ to Java bridge
API, the resulting connector will be a mixture of Java and C++, providing an ODBC
interface or SimbaServer executable for use with any of the SimbaClient connectors.

The 5-Day Guide for the JavaUltralight sample connector project is located at 5 Day
Guides at http://www.simba.com/resources/sdk/documentation/ under the section
"Build a JDBC Connector in 5 Days". Select the guide for a SQL-based data source.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
28

Introducing the Simba SDK

http://www.simba.com/resources/sdk/documentation/
http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

JavaQuickJson Sample Connector

Java Not SQL-Capable JDBC ODBC

JavaQuickJson is a sample Java DSI imlplementation written purely in Java to
demonstrate usage of the Java Simba SQLEngine. The connector accesses a data
store comprised of JSON files and uses a third party JSON API to read and write data
to those files. By including the Java Simba SQLEngine, the connector demonstrates
how to implement some of the classes specific to the Java Simba SQLEngine and how
the Java Simba SQLEngine can be used to access a data store that is not organized
using traditional tables and columns.

The 5-Day Guide for the JavaQuickJson sample connector project is located at 5 Day
Guides at http://www.simba.com/resources/sdk/documentation/ under the section
"Build a JDBC Connector in 5 Days". Select the guide for a non-SQL-based data
source.

Using the Sample Connectors for Debugging

You can use the sample connectors to analyze and debug suspected problems in your
custom connector. For example, if you think your DSI implementation is working
correctly but there is a problem in your Simba SDK system, there is a simple way to
determine where the problem lies. If the problem shows up when you run the system
you have assembled with the sample connector project implementation, then the
problem is likely to be in Simba SDK components.

If the problem goes away when you replace your DSI implementation with the sample
connector project, then you need to do some more investigation of your
implementation. In either case, analysis and debugging is focused and reduced,
lowering your cost to deliver a solution to your customers

Related Topics

Building Blocks for a DSI Implementation

The diagrams in this section illustrate the how the Simba SDK components work
together in both the standalone and the client/server deployment.

Note:

Although this guide explains how to build a connector that does not use the
SQL Engine, information on using the SQL Engine is included in this section for
reference.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
29

Introducing the Simba SDK

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Standalone Deployment

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
30

Introducing the Simba SDK

http://www.magnitude.com/

Client/Server Deployment

Each of these diagrams has three zones horizontally and vertically. The horizontal
zones are:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
31

Introducing the Simba SDK

http://www.magnitude.com/

Zone Description

Application
Platform

These elements, shown in gray boxes, represent the client-
side applications that will connect to the completed ODBC,
JDBC connector, or ADO.NET provider that you build with the
SDK.

Simba SDK These elements, shown in white boxes, are the components
that make up the SDK itself.

Customer
Implementation

These elements, shown in green boxes, represent the unique
code you write to access your data store.

The vertical zones align with the different development environments available to you:

Zone Description

C++

A C++ DSII may be written to support ODBC applications by linking
upward from your implementation to the SimbaODBC component.
Alternately, you can also support JDBC or ADO.NET applications by
linking upward to the SimbaServer component.

Java

A Java DSII may be written to support JDBC applications by linking to
the SimbaJDBC component. Alternately, you can support ODBC
applications by linking upward through the C++ to Java Bridge to the
SimbaODBC component, or support ODBC or ADO.NET applications by
linking your Java DSII upward via the same bridge to the SimbaServer
component.

C#

A C# DSII may be written to support ADO.NET applications by linking to
the Simba.NET component. Alternately, you can support ODBC
applications by linking upward via the C++ to C# Bridge to the
SimbaODBC component, or support ODBC or JDBC applications by
linking your C# DSII upward via the same bridge to the SimbaServer
component.

Related Topics

Simba SDK FAQ

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
32

Introducing the Simba SDK

http://www.simba.com/resources/sdk/faq/
http://www.magnitude.com/

Getting Started

To get started building a custom ODBC, JDBC, OLE DB, or ADO.net connector using
the Simba SDK, follow these general steps:

1. Plan how to map your data store schema to the DSI model.
2. Use one of the 5-Day Guides to set up your development environment. For more

information on the 5-Day Guides, see http://www.simba.com/drivers/simba-
engine-sdk/#documentation.

3. Implement your plan for translating your data store to the DSI.

Mapping Your Data Store Schema to the DSI Model

The first step is to map your data store to the DSI model. The DSI represents the data
store as a series of tables and columns, and the purpose of your DSI implementation is
to translate your real data store schema into the DSI representation.

Note:

The DSI represents the data store as a series of tables and columns. The
purpose of your DSI implementation is to translate your data store schema into
tables and columns that the DSI can understand.

The diagram below shows an example of one type of mapping. The database on the
left uses an object-oriented or networked schema to store the data. However, a
relational SQL execution engine cannot directly use this schema.

If you represent the same database as tables and columns, even though you do not
actually transform the database into this new form, it fits the relational paradigm. Now
you can write a DSI implementation to create this view of the data and Simba SDK can
use the SQL Engine to execute SQL queries against it. In this way, any database you
can represent as tables and columns can be accessed by Simba SDK and made
accessible to applications and reporting tools.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
33

Introducing the Simba SDK

http://www.simba.com/drivers/simba-engine-sdk/#documentation
http://www.simba.com/drivers/simba-engine-sdk/#documentation
http://www.simba.com/drivers/simba-engine-sdk/#documentation
http://www.magnitude.com/

Relational applications, or applications that can access relational databases, cannot
access the networked data store on the left, because it is not a relational database.
Once you translate the data store to use tables and columns, as shown in the data
store on the right, relational applications can use the SQL Engine to send SQL queries
to it. Simba SQLEngine works with tabular database schema (but not non-tabular
database schema).

Using Virtual Tables

It might be tempting to create a tabular view of your data store by reading the entire
database into temporary tables, and accessing these tables through the DSI.
However, this is inefficient and only works for very small databases. A more efficient
method is to create virtual tables and then access the original database when the
Simba SDK requests data through the DSI.

Related Topics

Build a Connector in 5 Days

Simba SDK FAQ

Frequently Asked Questions

This section answers the questions that are commonly asked by people who are new
to the Simba SDK product and technology. For a more detailed FAQ, see the Testing
and Troubleshooting section of this guide.

What Platforms does the Simba SDK Support?

For information about the supported versions of Windows, Unix, Linux, and macOS,
plus a list of supported compilers, see Supported Platforms.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
34

Introducing the Simba SDK

http://www.simba.com/drivers/simba-engine-sdk/#documentation
http://www.simba.com/resources/sdk/faq/
http://www.magnitude.com/

What is ODBC?

ODBC stands for Open Database Connectivity (ODBC). It is a C-language open
standard Application Programming Interface (API) for accessing relational databases.

In 1992, Microsoft contracted Simba to build the world's first ODBC connector;
SIMBA.DLL, and standards-based data access was born. Using ODBC, you can
access data stored in many common databases. A separate ODBC connector is
needed for each database to be accessed. An ODBC Driver Manager is also needed.
This is supplied with the Windows operating system, and is available commercially
and as open source on Unix and Linux.

What is MDAC?

MDAC, or Microsoft Data Access Components, are runtime components that are
shipped with the Windows operating system. These components contain interfaces for
ODBC, OLEDB and ADO, as well as the ODBC connectors for Microsoft’s database-
related products.

The MDAC SDK is available from the Microsoft Developer Network (MSDN) and can
be downloaded from:
http://www.microsoft.com/downloads/en/details.aspx?familyid=5067FAF8-0DB4-
429A-B502-DE4329C8C850&displaylang=en.

In newer versions of Windows (Vista & 7), MDAC is now called Windows DAC. For
more information, see http://msdn.microsoft.com/en-
us/library/ms692877%28v=vs.85%29.aspx.

What Third-Party Components Does the Simba SDK Use?

For information on the third-party components used by the Simba SDK, see Third
Party Licenses.

I am new to ODBC. How does my application work with an ODBC Connector?

ODBC-enabled applications always access ODBC connectors through the Driver
Manager that is installed on the operating system. An instance of the Driver Manager
is created for each ODBC application. The application will specify to the Driver
Manager which ODBC connector to use when establishing a connection. The Driver
Manager will then load the appropriate ODBC connector. Once the ODBC connector is
loaded, the Driver Manager will map all incoming requests to the appropriate functions
exported by the ODBC connector.

To interact with a Driver Manager, ODBC-enabled applications will request the
following three ODBC handles:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
35

Introducing the Simba SDK

http://www.microsoft.com/downloads/en/details.aspx?familyid=5067FAF8-0DB4-429A-B502-DE4329C8C850&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?familyid=5067FAF8-0DB4-429A-B502-DE4329C8C850&displaylang=en
http://msdn.microsoft.com/en-us/library/ms692877(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms692877(v=vs.85).aspx
http://www.magnitude.com/

SQL_HANDLE_ENV

Represents an environment handle. Every instance of an ODBC connector will be
associated with a single environment handle.

SQL_HANDLE_DBC

Represents a connection handle. Connections are created using one of the following
three ODBCmethods: SQLConnect(), SQLBrowseConnect(), SQLDriverConnect().
Every connection handle is associated with its parent environment handle.

SQL_HANDLE_STMT

Represents a statement handle. Every statement that is to be executed via ODBC will
be associated with its own statement handle. Every statement handle is associated
with its parent connection handle.

The Driver Manager interacts with an ODBC connector in much the same way. The
Driver Manager will request the handles for the environment, connection and
statement. All calls made from the ODBC-enabled application to the Driver Manager
require the Driver Manager allocated handle and will be implemented as follows:

1. Map incoming Driver Manager allocated handle to an instance representing the
handle.

2. Call the ODBC connector associated with the instance using the ODBC
connector associated handle.

What is ICU?

ICU stands for the International Components for Unicode (ICU) libraries. These
libraries provide Unicode handling mechanisms on which the SimbaODBC
components are dependent. These libraries are distributed under an open source
license at:

http://source.icu-project.org/repos/icu/icu/trunk/license.html

ICU is freely available from:

http://www.icu-project.org/download

What is SimbaODBC?

SimbaODBC is a component part of Simba SDK for developing full-featured,
optimized ODBC 3.80 connectors on top of any SQL-enabled data source.
SimbaODBC provides extensibility for JDBC, OLE DB as well as ADO.NET
connectivity. SimbaODBC simplifies exposing the query parsing, query execution and
data retrieval facilities of your SQL-enabled data source.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
36

Introducing the Simba SDK

http://source.icu-project.org/repos/icu/icu/trunk/license.html
http://www.icu-project.org/download
http://www.magnitude.com/

What do the Different Components of SimbaODBC do?

SimbaODBC ships with a number of static libraries. You will link these libraries into the
code you write to communicate with an underlying SQL-92 enabled data store.

What SQL Conformance Level Does Simba SDK support?

ODBC specifies three levels of SQL grammar conformance: Minimum, Core and
Extended. Each higher level provides more fully-implemented data definition and data
manipulation language support. Simba SDK fully supports Core DML SQL grammar,
as well as many Extended grammars.

Related Topics

5 Day Guides at http://www.simba.com/resources/sdk/documentation/

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
37

Introducing the Simba SDK

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Core Features

This section explains the features that most custom connectors will implement.

Fetching Metadata for Catalog Functions

ODBC applications need to understand the structure of a data store in order to execute
SQL queries against it. This information is provided using catalog functions. For
example, an application might request a result set containing information about all the
tables in the data store, or all the columns in a particular table. Each catalog function
returns data as a result set.

Your custom ODBC connector uses metadata sources, provided by the Simba SDK, to
handle SQL catalog functions. Of the 13 DSIMetadataSource sub-classes, there is
only one that you need to modify to make a basic connector work. This section
describes the other metadata classes and under what circumstances you need to
update them.

Implementation

Your CustomerDSIIDataEngine class has to derive from IDataEngine or
DSIDataEngine. If it is derived from IDataEngine, then the following function has
to be implemented:

Simba::DSI::IResult* MakeNewMetadataResult(

Simba::DSI::DSIMetadataTableID in_metadataTableID,

const std::vector<Variant>& in_filterValues,

const simba_wstring& in_escapeChar,

const simba_wstring& in_identifierQuoteChar,

bool in_filterAsIdentifier);

This function creates a new IResult* which contains a metadata data source and
filters out rows in the metadata table that are not needed. If the connector does not
support a metadata table, then the metadata source in the IResult* should be an
empty metadata data source with no rows.

The function takes the following parameters:

l in_metadataTableID: Identifier to create the appropriate metadata table. For a
list of the possible identifiers, refer to the table below. For complete details on
each identifier, refer to DSIMetadataTableID.h in the API guide.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
38

Core Features

http://www.magnitude.com/

l in_filterValues: Filters to be applied to the metadata table. These filters are
passed in by the application that calls the catalog function and cannot be
modified. For example, the catalog function SQLTables contains the arguments
CatalogName, SchemaName, TableName, and TableType. These arguments
are extracted to the in_filterValues vector.
While these values cannot be modified, if the CatalogName is NULL, the current
catalog name is used.

l in_escapeChar: Escape character used in filtering.
l in_identifierQuoteChar: Quote identifier, which is the quotation mark that this
filter recognizes.

l in_filterAsIdentifier: Indicates if string filters are treated as identifiers. This can be
set through the connection attribute SQL_ATTR_METADATA_ID.

If it is derived fromDSIDataEngine, then the following function has to be
implemented:

Simba::DSI::DSIMetadataSource* MakeNewMetadataTable(

Simba::DSI::DSIMetadataTableID in_metadataTableID,

Simba::DSI::DSIMetadataRestrictions& in_restrictions,

const std::vector<Simba::Support::Variant>& in_filterValues,

const simba_wstring& in_escapeChar,

const simba_wstring& in_identifierQuoteChar,

bool in_filterAsIdentifier);

This function creates a new Metadatasource* which contains raw metadata. If the
connector does not support a metadata table, then it should return an empty metadata
source with no rows by returning a DSIEmptyMetadataSource object.

The function takes the following parameters:

l in_metadataTableID: Identifier to create the appropriate metadata table. For
a list of the possible identifiers refer to the table below. For complete details on
each identifier refer to DSIMetadataTableID.h in the API guide.

l in_restrictions: Restrictions that may be applied to the metadata table.
Map of DSIOutputMetadataColumnTag that identify columns in the result set, to
the restriction that apply to those columns. For example, if the
DSIOutputMetadataColumnTag identifies a catalog name, then the restriction
specifies that the result set should only contain rows with the same catalog name

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
39

Core Features

http://www.magnitude.com/

as the restriction. For a complete list and details of
DSIOutputMetadataColumnTag values, refer to
DSIMetadataColumnIdentifierDefns.h in the API guide.

l in_filterValues: Filters to be applied to the metadata table. These filters are
passed in by the application that calls the catalog function and cannot be
modified. For example, the catalog function SQLTables contains the arguments
CatalogName, SchemaName, TableName, and TableType. These arguments
are extracted to the in_filterValues vector.
While these values cannot be modified, if the CatalogName is NULL, the current
catalog name is used.

l in_escapeChar: Escape character used in filtering.
l in_identifierQuoteChar: Quote identifier, which is the quotation mark that
this filter recognizes.

l in_filterAsIdentifier: Indicates if string filters are treated as identifiers.
This can be set through the connection attribute SQL_ATTR_METADATA_ID.

If the metadata table is supported by the connector, then a new class should be
implemented by deriving fromSimba::DSI::DSIMetadataSource and
implementing all the functions.

Note:

The Ultralight connector is a sample connector derives ULDataEngine from
DSIDataEngine. It implements classes for metadata tables for DSI_
TABLES_METADATA, DSI_CATALOGONLY_METADATA, DSI_
SCHEMAONLY_METADATA, DSI_TABLETYPEONLY_METADATA, DSI_
COLUMNS_METADATA, and DSI_TYPE_INFO_METADATA metadata table
identifiers.

Implementation

If the connector is using the SQL Engine, then the CustomerDSIIDataEngine class
has to derive from DSIExtSqlDataEngine, and implement the following function:
Simba::DSI::DSIMetadataSource* MakeNewMetadataTable(

Simba::DSI::DSIMetadataTableID in_metadataTableID,

Simba::DSI::DSIMetadataRestrictions& in_restrictions,

const simba_wstring& in_escapeChar,

const simba_wstring& in_identifierQuoteChar,

bool in_filterAsIdentifier) = 0;

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
40

Core Features

http://www.magnitude.com/

This function creates a new DSIMetadataSource* which contains raw metadata. If
the connector does not support a metadata table, then it should return an empty
metadata source with no rows by returning a DSIEmptyMetadataSource object.

The function takes the following parameters:

l in_metadataTableID: Identifier to create the appropriate metadata table. For
a list of the possible identifiers, refer to the table below. For complete details on
each identifier, refer to DSIMetadataTableID.h in the API guide.

l in_restrictions: Restrictions that may be applied to the metadata table.
Map of DSIOutputMetadataColumnTag that identify columns in the result set, to
the restriction that apply to those columns. For example, if the
DSIOutputMetadataColumnTag identifies a catalog name, then the restriction
specifies that the result set should only contain rows with the same catalog name
as the restriction. For a complete list and details of
DSIOutputMetadataColumnTag values, refer to
DSIMetadataColumnIdentifierDefns.h in the API guide.

l in_escapeChar: Escape character used in filtering.
l in_identifierQuoteChar: Quote identifier, which is the quotation mark that
this filter recognizes.

l in_filterAsIdentifier: Indicates if string filters are treated as identifiers.
This can be set through the connection attribute SQL_ATTR_METADATA_ID.

If the metadata table is supported by the connector, then a new class should be
implemented by deriving from Simba::DSI::DSIMetadataSource and
implementing all the functions.

The connector is required to implement a class for DSI_TYPE_INFO_METADATA
metadata table identifier, which is for catalog function SQLGetTypeInfo. This class
should derive from pure abstract class called DSIExtTypeInfoMetaDataSource that
has the following pure virtual function:

virtual Simba::SQLEngine::TypePrepared PrepareType
(Simba::SQLEngine::SqlTypeInfo& io_typeInfo) = 0;

This function takes the specified SQL type information, modifies any fields that need to
be changed to fit the data source, and indicates if that type is supported or not. For a
sample implementation, refer to the Quickstart sample connector.

The SQLEngine also provides default implementation for the following metadata table
identifiers:

l DSI_TABLES_METADATA
l DSI_CATALOGONLY_METADATA

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
41

Core Features

http://www.magnitude.com/

l DSI_SCHEMAONLY_METADATA
l DSI_TABLETYPEONLY_METADATA
l DSI_COLUMNS_METADATA
l DSI_PROCEDURES_METADATA
l DSI_PROCEDURES_COLUMNS_METADATA
l DSI_STATISTICS_METADATA

If the connector chooses to use these default implementations, then the connector has
to implement a class that derives from
Simba::SQLEngine::DSIExtMetadataHelper and implement all the functions.
The two pure virtual functions GetNextProcedure() and GetNextTable() are
called by the default implementations to retrieve the next procedure and the next table,
respectively. For a sample implementation of MetadataHelper class, refer to the
Quickstart sample connector.

Note:

Note: If the connector does not use the default implementations for the
metadata table identifiers mentioned above, then the connector should
implement its own class for the metadata table identifiers by deriving from
Simba::DSI::DSIMetadataSource. The connector should create an empty
metadata source with no rows by returning a DSIEmptyMetadataSource object
for the metadata table identifiers that it does not support. For a sample
implementation of DSIMetadataSource classes, refer to the sample connector.

Adding Custom Metadata Columns

Each catalog function returns data as a result set. In addition to the ODBC-standard
columns that are returned when a catalog function is executed, the data store can
return additional columns. Your custom connector can add custom metadata columns
to the Metadata result tables in order to support data source-specific data. The
DSIMetadataSource-derived classes support custom columns, which are enabled
by proper implementations of several functions. These functions are:

l GetCustomColumns

l GetCustomMetadata

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
42

Core Features

http://www.magnitude.com/

Note:

l All custom metadata columns must be of type
DSICustomMetadataColumn. The header file for
DSICustomerMetadataColumn can be found at [INSTALL_
DIRECTORY]\DataAccessComponents\Include\DSI\Client\DS
ICustomMetadataColumn.h

l This feature is only supported in the C++ SDK.

A sample implementation of a custom metadata column for
CustomerDSIITablesMetadataSource is shown below. Adding custom metadata
columns to any other metadata source follows a similar formula.

To Add Custom Metadata Columns:

1. Define a custom column tag for the custom column:

const simba_uint16 CUSTOM_TABLES_COLUMN_TAG = 50;

2. Define a member variable for the custom column:

std::vector<Simba::DataSToreInterface::DataEngine::Clien
t::
DSICustomMetadataColumn*> m_customMetadataColumns;

3. Initialize the metadata for the custom columns in the
CustomerDSIITablesMetadataSource constructor. Use the static
MakeNewSqlTypeMetadata function of the
Simba::Support::TypedDataWrapper::SqlTypeMetadataFactory
class.

using namespace Simba::DSI;
using namespace Simba::Support;
DSICustomMetadataColumn* column = NULL;
DSIColumnMetadata* colMetadata = NULL;
SqlTypeMetadata* metadata = NULL;
// Custom column
colMetadata = new DSIColumnMetadata();
colMetadata->m_autoUnique = false;
colMetadata->m_caseSensitive = false;
colMetadata->m_label = L"CUSTOM_COL";
colMetadata->m_name = L"CUSTOM_COL";
colMetadata->m_unnamed = false;
colMetadata->m_charOrBinarySize = 128;

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
43

Core Features

http://www.magnitude.com/

colMetadata->m_nullable = DSI_NULLABLE;
colMetadata->m_searchable = DSI_PRED_NONE;
colMetadata->m_updatable = DSI_READ_ONLY;
// Create SqlTypeMetadata*
metadata = SqlTypeMetadataFactorySingleton::GetInstance
()>CreateNewSqlTypeMetadata(SQL_VARCHAR);
column = new DSICustomMetadataColumn(
metadata,
colMetadata,
CUSTOM_TABLES_COLUMN_TAG);
m_customColumnMetadata.push_back(column);

4. For information on DSIColumnMetadata, refer to Simba SDK Java API
Reference or Simba SDK C++ API Reference.

5. Implement CustomerDSIITablesMetadataSource::GetCustomColumns:

void CustomerDSIMetadataSource::GetCustomColumns
(std::vector<Simba::DSI::DSICustomMetadataColumn*>& out_
customColumns)

6. Iterate over m_customColumns and push them into out_customColumns.

7. Implement
CustomerDSIITablesMetadataSource::GetCustomMetadata:

bool CustomerDSIITablesMetadataSource:::GetCustomMetadata
(
simba_uint16 in_columnTag,
SqlData* in_data,
simba_signed_native in_offset,
simba_signed_native in_maxSize)

The implementation is the same as
CustomerDSIITablesMetadataSource::GetMetadata except the column
tags you check are your custom column tags.For example:

switch (in_columnTag){

case CUSTOM_TABLES_COLUMN_TAG:{
//retrieve the appropriate data from your m_
result
}

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
44

Core Features

http://www.simba.com/docs/SDK/SimbaEngine_Java_API_Reference/
http://www.simba.com/docs/SDK/SimbaEngine_Java_API_Reference/
http://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference/
http://www.magnitude.com/

default:{
//throw exception – metadata column not found.
}

}

Overriding the Value of Default Properties

ODBC and JDBC connectors use connection, connector, environment, and statement
properties to specify and define their behavior and capabilities. The Simba SDK
provides default values for these properties. If the capabilities of your custom
connector are different from the specified defaults, or if you need to support the
requirements of a specific application, you can override these default values.

The Simba SDK implements these properties in the following classes in the Core
library:

Property Type Class Name of Property Map

Connection
properties

DSIConnection m_connectionProperties

Connector
properties

DSIDriver m_driverProperties

Environment
properties

DSIEnvironment m_environmentProperties

Statement
properties

DSIStatement m_statementProperties

Note:

For information about SQL Engine properties, see Using SQL Engine
Properties.

Properties are represented as key-value string pairs, which are stored in a property
map as shown in the table above. Properties are initialized with their default value in
the constructor of the corresponding class.

You can override these properties in your DSII subclass of the corresponding Core
class, but you must only override the default value for any property during the

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
45

Core Features

http://www.magnitude.com/

construction of each class instance. After that, property changes should only come
from the ODBC application calling the appropriate API function. The one exception to
this rule is that connection properties may be updated at the time a connection is
successfully established. This should be done before returning from the
CustomerDSIIConnection::connect function.

Each of these four Core classes has a function called SetProperty, which is used to
set the value for a property or attribute.

For a description of properties and default values in the C++ SDK, see the Simba SDK
C++ API Reference. Select Namespaces -> Simba::DSI then see the following
enumerations:

l DSIConnPropertyKey

l DSIDriverPropertyKey

l DSIEnvPropertyKey
l DSIStmtPropertyKey

For a description of properties and default values in the Java SDK, see the following
classes in the Simba SDK Java API Reference:

l ConnPropertyKey

l DriverPropertyKey

l EnvPropertyKey

l StmtPropertyKey

Note:

The term "property" and "attribute" are used interchangeably in the Simba
SDK. For example, a method might be called GetProperty but work with
AttributeData objects.

Example: Overriding the Value of Connection Properties

The example in this section shows how to override default property and attribute
values for the DSIConnection class. You can use the same method to override
default values in the DSIStatement, DSIDriver and DSIEnvironment classes.

Note:

This example is in C++ but it also applies to the Java SDK.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
46

Core Features

http://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference/
http://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference/
http://www.simba.com/docs/SDK/SimbaEngine_Java_API_Reference/
http://www.magnitude.com/

The example subclass of DSIConnection is called CustomerDSIIConnection. In
the CustomerDSIIConnection constructor, use the
DSIConnection::SetProperty()method to set the property or attribute value.
The signature of the DSIConnection::SetProperty function is:

virtual void SetProperty(

DSIProperties::DSIConnPropertyKeys::DSIConnPropertyKe
y in_key,
Simba::Support::Utility::AttributeData* in_value)

Example: Set the server name

The default value for DSI_SERVER_NAME is “”. It should be set to the name of the
DSI server. Pass in the key for the server name and the name of the server to the
SetProperty function.
SetProperty(

DSIProperties::DSIConnPropertyKeys::DSI_SERVER_NAME,
Utility::AttributeData::MakeNewWStringAttributeData
(<name_of_server>)

);

Example: Specify the Supported SQL_CHAR Conversions

The default value for DSI_SUPPORTED_SQL_CHAR_CONVERSIONS is DSI_CVT_
CHAR. If the application supports more conversions, you need to change this value.
Here, the value for the DSI_SUPPORTED_CHAR_CONVERSIONS property is made
up of a concatenation of all the values provided.
SetProperty(

DSIProperties::DSIConnPropertyKeys::DSI_SUPPORTED_SQL_
CHAR_CONVERSIONS,
Utility::AttributeData::MakeNewUInt32AttributeData(
DSIProperties::DSIConnPropertyValues::DSI_CVT_CHAR |
DSIProperties::DSIConnPropertyValues::DSI_CVT_NUMERIC
|
DSIProperties::DSIConnPropertyValues::DSI_CVT_DECIMAL
|
DSIProperties::DSIConnPropertyValues::DSI_CVT_INTEGER
|

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
47

Core Features

http://www.magnitude.com/

DSIProperties::DSIConnPropertyValues::DSI_CVT_SMALLINT
|
DSIProperties::DSIConnPropertyValues::DSI_CVT_FLOAT |
DSIProperties::DSIConnPropertyValues::DSI_CVT_REAL |
DSIProperties::DSIConnPropertyValues::DSI_CVT_VARCHAR
|
DSIProperties::DSIConnPropertyValues::DSI_CVT_
LONGVARCHAR |
DSIProperties::DSIConnPropertyValues::DSI_CVT_BINARY |
DSIProperties::DSIConnPropertyValues::DSI_CVT_
VARBINARY |
DSIProperties::DSIConnPropertyValues::DSI_CVT_BIT |
DSIProperties::DSIConnPropertyValues::DSI_CVT_TINYINT
|
DSIProperties::DSIConnPropertyValues::DSI_CVT_BIGINT |
DSIProperties::DSIConnPropertyValues::DSI_CVT_
TIMESTAMP |
DSIProperties::DSIConnPropertyValues::DSI_CVT_
LONGVARBINARY |
DSIProperties::DSIConnPropertyValues::DSI_CVT_WCHAR |
DSIProperties::DSIConnPropertyValues::DSI_CVT_
WLONGVARCHAR |
DSIProperties::DSIConnPropertyValues::DSI_CVT_
WVARCHAR)

);

Related Topics

Using SQL Engine Properties

Implementing Logging

The Simba SDK includes comprehensive logging functionality that you can use when
developing and troubleshooting your connector.

For information on how to turn on logging in the sample connectors, see Enable
Logging in the 5 Day Guides at http://www.simba.com/resources/sdk/documentation/.

For information on logging to Event Tracing for Windows (ETW), see Logging to Event
Tracing for Windows (ETW).

The Simba SDK enables multiple logger objects logging to separate files: one for the
single IDriver instance, and one for each IConnection instance. This allows for

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
48

Core Features

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

easier debugging of threading issues, while still allowing for logging of issues that
happen before a connection is established. If only one central log is needed, then child
IConnection objects can return the parent IDriver log instance to have all logging
calls focus on one ILogger.

The ILogger has a default implementation in DSILog, each of which logs to a file.
There are several functions to log messages at varying levels of importance as
needed. The DSILog allows for filtering of logging messages based on both log level
and namespace, enabling you to narrow logging to suspect areas of your DSII. If the
default DSILog does not provide enough functionality, then you may choose to create
a full implementation of ILogger directly from the interface that provides the
functionality that you need.

Log Settings

There are three settings that affect logging by default:

l LogLevel – Used to set the level of logging that is performed. Valid values are:
o 0 or “Off”
o 1 or “Fatal”
o 2 or “Error”
o 3 or “Warning”
o 4 or “Info”
o 5 or “Debug”
o 6 or “Trace”

l LogPath – Set the path that the default logging implementation will create the log
files in. Defaults to the current working directory.

l LogNamespace – Filters the logging based on the namespace/package that the
messages are coming from. For instance, the value “Simba” will filter all logging
messages to namespaces starting with “Simba” such as “Simba::Support”.

The settings are read from the registry at HKLM\SOFTWARE\<OEM NAME>\Driver
for both SimbaODBC and Simba.NET, while they are read from the connection string
for SimbaJDBC.

For Simba.NET on platforms using .NET Core, there may be no registry to read
configuration from if not using Windows. Instead, the configuration can be read from
one of several configuration files:

1. User-level configuration for the current application: %APPDATA%/[COMPANY]/
[APPLICATION]/[APPLICATION VERSION]/user.config.
(%APPDATA% is typically C:\Users\username\AppData\Roaming on

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
49

Core Features

http://www.magnitude.com/

Windows and /home/username/.config/ on other operating systems.)
2. User-level configuration for the provider: %APPDATA%/[BRANDING]/

[BRANDING].config.
3. Application-level configuration: [APPLICATION DIRECTORY]/

[APPLICATION NAME].config.
4. Provider-level configuration: [PROVIDER DIRECTORY]/

[BRANDING].config.

The format of the configuration file is the same as a typical .NET App.Config file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<configSections>
<section name="Simba.UltraLight"
type="Simba.DotNetDSI.ConfigReader, Simba.DotNetDSI" />
</configSections>
<Simba.UltraLight
LogLevel="0"
LogPath="/tmp/ultralight.log" />
</configuration>

The section name and name of the tag added are based on the branding set in the
provider, with " \ " replaced by " . ". If adding to an existing configuration file, the
<section> tag should be added to an existing <configSections> tag.

Hiding Sensitive Information in the Log Files

The Simba SDK does not log the value of the connection parameters username (UID)
and password (PWD). Instead, the values are logged as asterisks (****). The
DSIConnection::IsSensitiveAttribute()method determines whether or not
the value of a connection parameter should be logged. The
IsSensitiveAttribute()method is called by the ConnectionSettings class
when a connection is established.

Example

If you enter a username and password when connecting to the MyQuickstartDSII
connector, the resulting log file will contain the strings "PWD" = "***" and "UID" =
"***", rather than the actual username and password.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
50

Core Features

http://www.magnitude.com/

Your custom ODBC connector can specify additional connection parameters that
should not have their values logged in plain text. To do this, override
DSIConnection::IsSensitiveAttribute() in your Connection.cpp class.

For example, in the following code, the values of the connection parameters Secret1
and Secret2 will be logged as asterisks (*****):

bool QSConnection::IsSensitiveAttribute(const simba_wstring&
in_attribute)
{

if ((in_attribute.IsEqual("Secret1")) ||(in_
attribute.IsEqual("Secret2")))

{

return true;

}

return DSIConnection::IsSensitiveAttribute(in_
attribute);

}

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
51

Core Features

http://www.magnitude.com/

Logging in the Java DSI

The Java Simba SDK includes a helper class called LogUtilities to help you
implement logging functionality. This class provides a copy of many of the functions
that exist in ILogger, but the functions take an ILogger instance and do not take the
namespace or class names from which the logging call originates. Instead, it uses
reflection to determine that information, easing use of the logger.

Logging in the DotNet DSI

The dotNet Simba SDKincludes a helper class called LogUtilities to help you
implement logging functionality. This class provides a copy of many of the functions
that exist in ILogger, but the functions take an ILogger instance and do not take the
namespace or class names from which the logging call originates. Instead, it uses
reflection to determine that information, easing use of the logger.

Simba.NET Specific Features

Note that there is an extra setting for Simba.NET to provide logging if an error occurs
before a DSI DLL is loaded:

l PreloadLogging – Set to 0 (off) or 1 (on) to log to the file InitialDotNet.log. Once a
DSII DLL is loaded, the DSI ILogger will be used.

Related Topics

Enable Logging in the Data Engine

Logging to Event Tracing for Windows (ETW)

Enable Logging in the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/.

http://www.simba.com/resources/sdk/knowledge-base/enable-logging-in-odbc/

http://www.simba.com/resources/sdk/knowledge-base/simbaengine-logging/

Using SQL Engine Properties

This section describes the properties you can use to modify the default behaviour of
the Simba SQLEngine. In the C++ SDK, you set these properties on the
DSIExtSqlDataEngine class, while in the Java SDK you set them on the
SqlDataEngine class.

For general information on overriding default properties, see Overriding the Value of
Default Properties.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
52

Core Features

http://www.simba.com/resources/sdk/documentation/
http://www.simba.com/resources/sdk/knowledge-base/enable-logging-in-odbc/
http://www.simba.com/resources/sdk/knowledge-base/simbaengine-logging/
http://www.magnitude.com/

Properties in the C++ and Java SQL Engine

These properties are available in both the C++ and the Java SQL Engine.

DSIEXT_DATAENGINE_NULL_EQUALS_EMPTY_STRING

This property determines if the IS NULL predicate is treated the same way that = ''
(empty string) is. Available values are:

l Y – Specifies that IS NULL and = '' are treated the same way.
l N– Specifies that IS NULL and = '' are not treated the same way.

Defaults to N.

DSIEXT_MAX_OPEN_FILE_PER_NODE

This property specifies the aximum number of open files that one execution node or
unit, for example a sort or join node, are allowed to use. The property is to make sure
that SQLEngine do not consume too much file descriptors as many Linux like systems
limit the number of open file descriptors per process.

This must be a positive, signed int-32 value. The minimum value for this property is 4,
and the default value is 50.

DSIEXT_DATAENGINE_TABLE_CACHING

This property determines if the SQLEngine caches tables that it reads if a row would
be visited more than once, so that the DSII can safely discard data once a row has
been visited. Available values are:

l Y – SQLEngine caches tables if needed.
l N – SQLEngine dpes not cache tables, and the DSII will cache the tables to allow
rows to be visited multiple times.

Defaults to N.

DSIEXT_DATAENGINE_AETREEOPTIMIZATION

This property determines if the SQLEngine performs optimizations on an AE Tree.
Available values are:

l Y - SQLEngine performs AE Tree optimizations.
l N - SQLEngine does not perform AE Tree optimizations.

Default is Y.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
53

Core Features

http://www.magnitude.com/

DSIEXT_DATAENGINE_LOG_AETREES

This property specifies which types of logging to perform on an AE Tree before and
after Collaborative Query Execution (CGQ). If a specific value is set, then the file
AETree.log is created in the global logging path, otherwise no logging is performed.
The available bitwise values are:

l DSIEXT_LOG_PRE_OPTIMIZE – logs the tree prior to optimization.
l DSIEXT_LOG_POST_REORDER - logs the tree prior to reordering.
l DSIEXT_LOG_POST_OPTIMIZE - logs the tree after optimization.
l DSIEXT_LOG_POST_PASSDOWN - logs the tree after passdowns are
complete.

l DSIEXT_LOG_DOT_GRAPH – logs the tree in DOT format for viewing in a
suitable graphing program.

Default is 0.

DSIEXT_DATAENGINE _COALESCE_DUPLICATE_GROUP_BY_
EXPRESSIONS

This property determines if the SQLEngine removes duplicate expressions in the
GROUP BY list in the AETree. Available values are:

l Y - SQLEngine removes duplicate expressions.
l N - SQLEngine does not remove duplicate expressions.

Default is Y.

DSIEXT_DATAENGINE_IGNORE_PARSER_LIMITS

This property determines if the SQLEngine ignores limits defined by SQLGetInfo when
building the parse tree. Available values are:

l Y - parser limits are ignored.
l N - parser limits are respected.

Default is N.

DSIEXT_DATAENGINE_LOG_PARSETREE

This property determines if the SQLEngine logs the parse tree. Available values are:

l Y - SQLEngine logs the parse tree.
l N - SQLEngine does not log the parse tree.

Default is N.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
54

Core Features

http://www.magnitude.com/

DSIEXT_DATAENGINE_LOG_ETREE

This property determines if the SQLEngine logs the AETree.

l Y - SQLEngine logs the ETree.
l N - SQLEngine does not log the ETree.

Default is N.

DSIEXT_DATAENGINE_USE_DSII_INDEXES

This property determines if the SQLEngine uses DSII indexes during execution.

l Y - SQLEngine uses DSII indexes.
l N - SQLEngine does not use DSII indexes.

Default is N.

DSIEXT_DATAENGINE_PREFER_INDEX_ONLY_SCANS

This property determines if the SQLEngine uses DSII indexes for 'Index-Only scans'
even if no filters are satisfied by the indexed columns.

l Y - SQLEngine prefers the use of index-only scans to table scans.
l N - SQLEngine does not prefer the use of index-only scans to table scans.

Default is Y.

DSIEXT_DATAENGINE_USE_LITERAL_LEN_FOR_PARAM_META

This property determines if the SQLEngine uses the DSI_CONN_MAX_CHAR_
LITERAL_LEN and DSI_CONN_MAX_BINARY_LITERAL_LEN when exposing
parameter metadata.

l Y - DSI_CONN_MAX_CHAR_LITERAL_LEN and DSI_CONN_MAX_BINARY_
LITERAL_LEN is used.

l N - length returned by the column being inserted into or being compared against
is exposed.

Default is Y.

Properties in the Java SQL Engine

These properties are available in the Java SQL Engine only.

DSIEXT_RECOMMENDED_TEMPORARY_TABLE_BLOCK_SIZE

This property specifies the recommended block size (in bytes) that is used for memory
intensive operations such as SORT or JOIN that use a temporary table to save

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
55

Core Features

http://www.magnitude.com/

intermediate results to disk.

Default is 1000000.

DSIEXT_MAX_COLUMN_SIZE_TO_INCLUDE_IN_BLOCK

This property specifies the maximum column size in bytes for SQL-CHAR and SQL-
BINARY types that is stored in a memory block during memory intensive operations
such as SORT or JOIN that use a temporary table to save intermediate results to disk.

Default is 1000000.

DSIEXT_PROVIDE_DEFAULT_CATALOG_NAME

This property determines if the SQLEngine provides the default catalog name to
SqlDataEngine::openTable() when the user has not specified it in the input SQL
statement.

l Y - SQLEngine provides the default catalog name to
SqlDataEngine::openTable().

l N - length returned by the column being inserted into or being compared against
is exposed.

Default is Y.

SQLEngine Specific Switches

The SQLEngine also provides some switches to customize its behavior. These
switches are read from either HKLM\SOFTWARE\<OEM NAME>\Driver in the
Windows registry or from the vendor .ini file on non-Windows platforms.

SwapFilePath

This property sets the path that SQLEngine will use for creation of temporary swap
files that are needed for certain operations.

Related Topics

Overriding the Value of Default Properties

Adding Custom Connection and Statement Properties

Custom properties can be added to Connection and Statement objects. These
properties allow you to customize how your connection and statement objects behave.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
56

Core Features

http://www.magnitude.com/

Important:

Before you can implement custom properties for your connection and
statement attributes, you should request and reserve a value for each attribute
from the Open Group. This ensures that no two connectors will assign the
same integer value to different custom attributes. If you do not reserve a unique
attribute or use one that is already in use, your connector may experience
compatibility issues with any application that uses the conflicting custom
attributes for other connectors.

For more information on requesting a value from the Open Group, refer to the
Connector-Specific Data Types, Descriptor Types, Information Types,
Diagnostic Types, and Attributes section of the MSDN ODBC Programmer’s
Reference.

Custom Properties in the C++ SDK

You must define keys for each of the custom Connection or Statement properties
or attributes for which you would like to add support. For each custom key, create a
Simba::Support::AttributeData* to store data for the property or attribute.
Use a map to map keys to their corresponding AttributeData*. For more
information on creating a custom key refer to the DSIConnProperties.h or
DSIStmtProperties.h header files in the folder [INSTALL_
DIRECTORY]\DataAccessComponents\Include\DSI .

To add custom connection and statement properties, implement the following methods
in your CustomerDSIIConnection and/or CustomerDSIIStatement class:

l IsCustomProperty()

In this function, check if the provided key corresponds with one of the standard
ODBC properties. Return false if it does not; true otherwise.

To see the list of keys for ODBC properties, see the
Simba::DSI::DSIStmtPropertyKey enum or the
Simba::DSI::DSIConnPropertyKey DSIConnPropertyKey enum in the
C++ API reference. Go to Simba SDK C++ API Reference, select the
Namespaces tab, select Simba::DSI, then search for DSIConnPropertyKey.

l SetCustomProperty()

In this function, set an AttributeData* for the custom property key. In your
implementation, check to ensure the provided key corresponds to a custom
property or attribute. If it does not, an appropriate error or exception should be
thrown and logged.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
57

Core Features

https://msdn.microsoft.com/en-us/library/ms714131(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms714131(v=vs.85).aspx
http://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference/
http://www.magnitude.com/

l GetCustomProperty()

This function retrieves the AttributeData* associated with a custom key. In
your implementation, check to ensure the provided key corresponds to a custom
property or attribute.

l GetCustomPropertyType()

This function retrieves the data type associated with the custom property or
attribute. Data types are defined in the Simba::Support::AttributeType
enum, located in the header folder [INSTALL_
DIRECTORY]\DataAccessComponents\Include\Support\AttributeD
ata.h.

Custom Properties in the Java SDK

Custom properties can be added to the connectors using the Java DSI with either the
JNI DSI API, or the SimbaJDBC component. When using the JNI DSI API, custom
properties are accessed in the same way that custom properties are accessed for
ODBC connectors. When using the SimbaJDBC component, the custom properties
are exposed through the following custom extensions to the Connection and
Statement objects:

l getAttribute(int)

Retrieve a custom property identified by the integer key.
l setAttribute(int, Object)

Set a custom property identified by the integer key.

Note:

Because these are custom extensions, applications will have to be coded to
explicitly use these functions.

Custom Properties in the DotNet SDK

Custom properties can be added to connectors using the DotNet DSI, but can only be
directly accessed when using the CLI DSI to build an ODBC connector.

Handling Connections

The ODBC application, the Simba ODBC layer, and your custom DSII layer interact to
establish a connection to your data store. An important part of this process is obtaining
all the required connection settings. The Simba SDK provides functions to help you
manage the set of required and optional connection settings, and to repeat the request
for settings until all required settings are obtained.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
58

Core Features

http://www.magnitude.com/

For a description of the connection process, see Understanding the Connection
Process below.

Obtaining Settings and Connecting to the Data Store

In your CustomerDSIIConnection::UpdateConnectionSettingmethod, the
in_connectionSettings parameter includes the connection settings that the user
specified in the connection string, DSN, and/or prompt dialog. Your implementation of
this method should return any modified or additional required (or optional) connection
settings in the out_connectionSettings parameter.

You can use the utility functions VerifyOptionalSetting and
VerifyRequiredSetting to help you check if a setting exists. If a setting does not
exist, these functions put the appropriate value in the out_connectionSettings
map.

To specify a list of acceptable values for one of your connection settings in the out_
connectionSettingsmap, you must enter it yourself. For example:

DSIConnSettingRequestMap::const_iterator itr = in_
connectionSettings.find(L"SomeSetting");
if (itr == in_connectionSettings.end())
{

// Missing the required key, so add it to the
requested settings.
AutoPtr<ConnectionSetting> reqSetting(new
ConnectionSetting(SETTING_REQUIRED));
reqSetting->SetLabel(L"SomeSetting");
reqSetting->RegisterWarningListener
(GetWarningListener());
std::vector<Simba::Support::Variant> values;
values.push_back(Variant(L"YES"));
values.push_back(Variant(L"NO"));
values.push_back(Variant(L"UNKNOWN"));
reqSetting->SetValues(values);
out_connectionSettings[L"SomeSetting"] =
reqSetting.Detach();

}

If out_connectionSettings contains additional required connection settings, then
the Simba ODBC Layer will call PromptDialog to request these settings. Connection
settings can be required or optional. This retrieve-request cycle repeats until all
required connection settings have been provided. Once all required settings have

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
59

Core Features

http://www.magnitude.com/

been provided (even if some optional settings have not been provided), then the
Simba ODBC Layer will call your CustomerDSIIConnection::Connect function.

Your implementation of the CustomerDSIIConnection::Connect function should
establish a connection to your data store. You should inspect the in_
connectionSettings parameter to retrieve any connection settings that are
needed to establish and set up a connection to your data store. You can use the utility
functions GetOptionalSetting and GetRequiredSetting to help you extract
the settings from the in_connectionSettings parameter.

When your implementation of the CustomerDSIIConnection::PromptDialog
function is called, you have the option of displaying a graphical dialog box to the user
for requesting parameters or other connection settings. See Creating and Using
Dialogs for more information about creating dialog boxes.

For example, if you require the user to enter a user id and a password, you can request
those parameters from the user using this dialog box. If you do not wish to implement a
dialog box, you can simply leave the PromptDialog function empty.

Example: Handling a Missing Password

Assume your DSII requires a user ID and password to establish a connection to your
data store. Then, an application attempts a connection using SQLDriverConnect
supplying the user ID setting but missing the password setting.

First, UpdateConnectionSettings is called so that all the settings that are needed
for a connection can be verified. Your UpdateConnectionSettingsf unction would
use VerifyRequiredSetting for both the user ID and password keys to verify that
they are present.

If any key is not present, it will be added to the out_connectionSettings
parameter by VerifyRequiredSetting. Since the password key is missing, out_
connectionSettings now contains that setting, and
UpdateConnectionSettings will return.

When the Simba ODBC layer detects that a required setting is missing, it calls
PromptDialog. This allows your DSII to prompt a dialog to the user to request any
additional or missing information. Once the user has filled out the dialog and returned,
the Simba ODBC layer will call UpdateConnectionSettings again to verify that all
the required settings are now present. If all the required settings are present, it will
then call Connect to proceed with the connection. If all the required settings are not
present, it continue the PromptDialog and UpdateConnectionSettings cycle
until the user cancels the dialog.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
60

Core Features

http://www.magnitude.com/

Understanding the Connection Process

This section provides a detailed explanation of how the end user, your ODBC-enabled
application, the Simba ODBC Layer and your DSII layer interact to establish a
connection to your data store. It then explains how you must handle the connection
process in your own custom connector.

When the end-user initiates a connection to your data store, the Simba ODBC Layer
will call your CustomerDSIIConnection::UpdateConnectionSettings
function. Note that in some cases the Simba ODBC Layer may call your
CustomerDSIIConnection::PromptDialog function, discussed later in this
section, first if the connection parameters indicate it should do so. This process is
shown in the diagram below:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
61

Core Features

http://www.magnitude.com/

Related Topics

Creating and Using Dialogs

Creating and Using Dialogs

The Simba SDK includes functionality to help you implement dialogs. You can use
these dialogs to retrieve user input such as connection settings or configuration

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
62

Core Features

http://www.magnitude.com/

information.

Dialogs in Windows

The Quickstart sample connector for Windows platforms includes a sample
implementation of a user dialog. For information on the Quickstart sample connector,
see Build a C++ ODBC Connector in 5 Days at
http://www.simba.com/resources/sdk/documentation/.

This section shows you how to use the PromptDialogmethod of your
CustomerDSIIConnection class to display a dialog box that prompts the user for
settings for this connection. For more information on the connection process, see
Handling Connections.

The CustomerDSIIConnection::PromptDialogmethod has the following
signature:

virtual bool PromptDialog(
Simba::DSI::DSIConnSettingResponseMap& in_connResponseMap,
Simba::DSI::DSIConnSettingRequestMap& io_connectionSettings,
HWND in_parentWindow,
Simba::DSI::PromptType in_promptType
);

This method has the following parameters:

l in_connResponseMap

The connection response map updated to reflect the user's input.
l io_connectionSettings

The connection settings map updated with settings that are still needed and
were not supplied. The connection settings from io_connectionSettings are
presented as key-value string pairs. The input connection settings map is the
initial state of the dialog box. The input connection settings map will be modified
to reflect the user's input to the dialog box.

l in_parentWindow

Handle to the parent window to which this dialog belongs.
l in_promptType

Indicates what type of connection settings to request either both required and
optional settings or just required settings.The return value for this method
indicates if the user completed the process by clicking OK on the dialog box

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
63

Core Features

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

(return true), or if the user aborts the process by clicking CANCEL on the dialog
box (return false).

Linux/Unix/macOS

Dialogs are also possible on Linux/Unix/macOS platforms, although the Quickstart
sample connector for those platforms does not include a sample implementation.

The PromptDialog function is the same as for Windows. However, the meaning of
the in_parentWindow argument is undefined. Different applications may potentially
pass in different types of window handles. Therefore, in_parentWindow can only be
used if your connector can make assumptions about running within a specific window
system or API toolkit. Otherwise, the window you create will need to be parentless.

Related Topics

Handling Connections

Canceling Operations

Prior to ODBC 3.8, only statement operations could be cancel using SQLCancel. In
ODBC 3.8 a new function called SQLCancelHandle was added that can cancel both
statement and connection operations. Note that canceling a statement in 3.8 using
SQLCancelHandle is identical to canceling it using SQLCancel.

Simba SDK supports both SQLCancelHandle and SQLCancel. The
implementations of DSIConnection and DSIStatement can handle and clear the
cancel requests through the OnCancel and ClearCancel callbacks. The following
table summarizes this functionality:

Class OnCancel ClearCancel

DSIConnection

Invoked when
SQLCancelHandle is
called on the
DSIConnection’s
handle.

Invoked at the
beginning of a
connection related
function that has
the ability to be
canceled.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
64

Core Features

http://www.magnitude.com/

Class OnCancel ClearCancel

DSIStatement

Invoked when
SQLCancelHandle or
SQLCancel is called
on the
DSIStatement’s
handle.

Invoked at the
beginning of a
statement function
that has the ability
to be canceled.

In OnCancel, the object can perform any cancellation logic such as setting flags to
indicate that an operation should be canceled.

In ClearCancel, the object can clear any pending cancel notification (e.g. clear
flags).

Handling Transactions

A transaction is a set of operations that are executed on a data store. If a transaction is
successful, all of the data modifications made during the transaction are committed. If
a transaction encounters errors and must be canceled or rolled back, then all of the
data modifications are erased.

If your data store supports transactions, you can enable them in your custom ODBC or
JDBC connector. To enable transactions in your connector, your DSII must enable
both read and write functionality.

To enable read/write capability on your connector:

l For the C++ SDK, call DSIPropertyUtilities::SetReadOnly, passing in
false for the second parameter.

l For the Java SDK, call PropertyUtilities::SetReadOnly, passing in
false for the second parameter.

Enabling Transaction Support

After adding read/write capability to your custom connector, you can enable
transaction support by creating your own implementation of the DSIIConection
class and implementing the BeginTransaction(), Commit(), and Rollback()
methods.

Implement the DSIConnection Class

Support for transactions is implemented in the DSIConnection class. Override this
class so you can provide your own implementation.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
65

Core Features

http://www.magnitude.com/

Specify that Transactions are Supported

The Simba SDK uses a property to specify the level of transaction support for a
custom connector. This is done differently in C++ and in Java.

To set the DSI_CONN_TXN_CAPABLE Property in C++:

Set the DSI_CONN_TXN_CAPABLE property in your DSIConnection object to
specify the level of transaction support that your connector can handle. You can use
the DSIPropertyUtilities::SetTransactionSupport() helper method.

Example: Setting the DSI_CONN_TXN_CAPABLE property in C++

In this example, a helper method called SetConnectionPropertyValues() is
used to set the DSI_CONN_TXN_CAPABLE property. This method is invoked from
the MyConnection class’s constructor. It calls the SetReadOnlymethod, passing in
false:
void MyConnection::SetConnectionPropertyValues(){
DSIPropertyUtilities::SetReadOnly(this, false);
DSIPropertyUtilities::SetTransactionSupport(this, DSI_TC_

DML);

...

In the above example, transaction support is set to DSI_TC_DML, which only supports
DML statements within a transaction.

To set the DSI_TXN_CAPABLE Property in Java:

Set the ConnPropertyKey.DSI_TXN_CAPABLEin your DSIConnection object to
specify the level of transaction support that your connector can handle. You can do
this using the DSIConnection::SetProperty()method, passing DSI_TXN_
CAPABLE as the attribute data.

Implement the Required Methods in the DSIConnection Class

To support transactions, your connector must implement the methods as described in
this section.

1. BeginTransaction()

This method is invoked by the Simba SDK at the start of a new transaction on the
connection. This method is responsible for performing any logic that is required
before the transaction starts, such as ensuring that transactions are supported,
or checking that a transaction is not already in progress.

Example: Check whether a transaction is already in progress

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
66

Core Features

http://www.magnitude.com/

In this example, the custom connector checks a member variable that tracks
whether a transaction is already in progress. If so, an exception is thrown.
Otherwise, the member is set to true at this point. Subsequent transaction
methods will check this variable to coordinate their workflows with the current
transaction.
void MyConnection::BeginTransaction() {

if (isInTransaction) {
XMTHROWGEN(" Illegal transaction state change

(BeginTransaction). ");
}
else {

isInTransaction = true;
}

}

2. Commit()

This method is invoked by the Simba SDK to commit the statements of a
transaction. This method is responsible for performing commit-related logic for
the outstanding transaction on the connection, such as storing any inserted or
updated data.

Example: Sample Commit() Implementation

This example shows one way that you could implement your Commit()method.
It also shows a helper method, MyConnection::CommitImp().
void MyConnection::Commit(){

if (!isInTransaction) {

XMTHROWGEN(" Illegal transaction state
change(Commit). ");

}
else {

isInTransaction = false;
CommitImpl();

}

}
//
//

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
67

Core Features

http://www.magnitude.com/

void MyConnection::CommitImpl() {

// Get the Connector's Tables
AutoValueMap<XMTableIdentifier, const
XMTableData>& driverTableDataMap = GetTableDataMap
();
CriticalSectionLock lock(m_criticalSection);
for (AutoValueMap<XMTableIdentifier, const
XMTableData>::iterator it = m_changedTables.begin
(); it != m_changedTables.end(); it++){

MapUtilities::InsertOrUpdate
(driverTableDataMap, it->first, it-
>second);
it->second = NULL;

}

}

MyConnection::Commit() first ensures that a transaction is in progress, and
then delegates the commit logic to MyConnection::CommitImpl.
MyConnection::CommitImpl first takes a lock. Then, it iterates through its m_
changedTablesmember, which is used to track tables that have had inserts or
updates to made to their values. Finally, it uses the
MapUtilities::InsertOrUpdate helper method to perform the actual data
value insertion/updates on these tables.

3. Rollback()

This method is invoked by the Simba SDK when a ROLLBACK statement is
encountered in a transaction query. This method is responsible for rolling back
data for an outstanding transaction on the connection, to the state it was in
before the start of the transaction.

Example: Sample Rollback() Implementation

This example shows one way that you could implement your Rollback()
method.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
68

Core Features

http://www.magnitude.com/

void XMConnection::Rollback(){

if (!isInTransaction){

XMTHROWGEN(" Illegal transaction state
change(Rollback). ");

}
else {

isInTransaction = false;
m_changedTables.DeleteClear();

}

}

This method first ensures that a transaction is in progress. If the transaction is in
progress, it resets isInTransaction to indicate that a transaction is no longer
in progress, followed by a call to m_changedTables.DeleteClear(), which
clears the listing of tables that have been modified.

Adding Support for Savepoints (SimbaJDBC only)

A savepoint is a way of implementing subtransactions, which are also called nested
transactions. A savepoint is used to mark a point in a transaction that you can roll back
to without affecting any work done in the transaction before the savepoint was created.
Savepoints are supported for DSIIs that are written in Java and use the SimbaJDBC
component.

Set the DSI_SUPPORTS_SAVEPOINTS property

Set the DSI_SUPPORTS_SAVEPOINTS property in your custom DSIConnection
object to DSI_SUPPORTS_SAVEPOINTS_TRUE.

Implement the Required Methods in the DSIConnection Class

Modify your custom DSIConnection object to override and implement the following
virtual methods:

1. createSavepoint(String)

This method is invoked by the Simba SDK when a SAVEPOINT statement is
encountered in a query. This method is responsible for creating a new Savepoint
with the specified name in the current transaction, and performing any save point
logic such as caching information about the current state of data, that could be
used to restore the state if a subsequent rollback operation occurs.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
69

Core Features

http://www.magnitude.com/

2. releaseSavepoint(String)

This method is invoked by the Simba SDK when a RELEASE statement is
countered in a query. This method is responsible for releasing the Savepoint with
the specified name so that the Savepoint is no longer available to rollback to.
This could also include performing any related logic such as freeing up
resources and clearing any state information that was related to the specified
save point.

3. rollback(String)

This method is invoked by the Simba SDK when a ROLLBACK statement is
encountered in a transaction query. This method is responsible for rolling back
data for an outstanding transaction on the connection, to the state it was in
before the start of the transaction.

Supporting Transactions through SQL

In some data sources, transactions can also be triggered by executing certain SQL
queries (e.g. BEGIN, COMMIT, AND ROLLBACK statements). Support for this is
provided through the ITransactionStateListener interface, which allows your
DSII to inform the Simba components of any changes in transaction state.

In your CustomerDSIConnection object, invoke the following methods on the m_
transactionStateListenermember exposed by the DSIConnection class.
This informs the Simba components of any changes to transaction state.

In the C++ SDK:

1. When a transaction has started, call
ITransactionStateListener::NotifyBegin.

2. When a transaction is committed, call
ITransactionStateListener::NotifyCommit.

3. When a transaction is rolled back, call
ITransactionStateListener::NotifyRollback.

In the Java SDK:

1. When a transaction has started, call
ITransactionStateListener.NotifyBeginTransaction.

2. When a transaction is committed, call
ITransactionStateListener::NotifyCommit.

3. When a transaction is rolled back, call
ITransactionStateListener::NotifyRollback.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
70

Core Features

http://www.magnitude.com/

If your DSII is written in Java and is using the SimbaJDBC component, then you may
need to notify the ITransactionStateListener about Savepoint operations as
well:

1. When a Savepoint is created, call
ITransactionStateListener::notifyCreateSavepoint.

2. When a Savepoint is released, call
ITransactionStateListener::notifyReleaseSavepoint.

3. When a transaction is rolled back to a Savepoint, call
ITransactionStateListener::notifyRollbackSavepoint.

Important:

ODBC does not support Savepoints, and attempting to use the
notify*Savepointfunctions on the ITransactionStateListener while
using the JNI DSI API will cause an exception.

Bulk Fetch in the C++ SDK

Prior to Simba SDK 10.0, data had to be retrieved from an IResult row by row and
column by column using the Movemethod to position the cursor, and RetrieveData
to return a cell of data. Retrieving data in this manner is acceptable for
small-to-medium sized datasets, or those with results spanning non-contiguous rows,
but has the following drawbacks:

l Data is accessed per cell, which means the ODBC layer of the SDK needs to
loop through each row and each column, invoking methods to retrieve and
convert each individual cell of data. This results in a large number of small data
transfers, with each of them requiring a small amount of overhead, but
collectively resulting in a noticeable impact on performance.

l The retrieval of each data cell involves invoking multiple virtual methods, which
can stall a CPU’s instruction pipeline and decrease a connector’s execution
performance.

As of 10.0, IResult now exposes the Bulk Fetch API which provides a more
optimized data retrieval mechanism allowing a connector to fetch contiguous rows of
data via a single method call and store the data directly into the buffer allocated by the
calling application. This “bulk fetch” mechanism eliminates the need to iterate over
rows and columns to return data and allows all the data for many rows to be returned in
one pass.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
71

Core Features

http://www.magnitude.com/

Note:

l Bulk fetch is currently supported for ODBC connectors that do not use the
SQL Engine and are not implemented by the Simba SDK’s ODBC Client.
Bulk Fetch can be implemented in SimbaServer, as described below.

l Bulk fetch is supported in the C++ SDK only.

Overview

This section describes the high-level overview for Bulk Fetch.

1. The ODBC layer of the SDK instantiates one Bulk Processor for each column
bound by the application. A Bulk Processor is an object that oversees the
process of copying and converting contiguous rows of data for a bound column.
Each Bulk Processor contains all the necessary information about the data
buffer and length/indicator field that the application has bound to the column as
well as a Bulk Converter which is an object that is able to convert values from the
SQL data type (the data type that the DSII uses to talk to the SDK) to a C data
type (the data type returned to the application).

2. The ODBC layer calls the BulkFetch method implementation of the DSII.
3. The DSII retrieves multiple rows for all the bound columns. Note that it can also

retrieve the data of other columns, but they won’t be used. The DSII can
organize the data as it wants in memory, but needs to leave it unchanged until
the bulk conversion is complete.

4. The DSII needs to instantiate one Column Segment per bound column. A
Column Segment describes where in memory the contiguous set of data rows for
a column can be found as well as the offsets required to find the next row. The
Bulk Processor uses a Column Segment so it knows where the values of the
retrieved rows have been stored in memory.

5. The DSII instructs the Bulk Processors to convert the columns (i.e. perform the
bulk fetch), providing them with the Column Segments it has just instantiated for
each bound column. The Bulk Processors convert all the SQL values retrieved
by the DSII to the C values directly into the buffer bound by the application.

6. Once the bulk fetch completes, the ODBC layer of the SDK does not need to
perform any further data processing because the Bulk Fetch has both converted
and copied the data for all rows to be returned directly to the application’s buffer.

Since the Bulk Fetch API writes directly to the buffer provided by the application, bulk
fetch functionality can only be used for columns which are bound by the calling
application (i.e. columns for which memory has been allocated and associated with
each column to store the data returned by the connector) and of those, only for
columns which have been selected for retrieval (i.e. those columns specified in a

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
72

Core Features

http://www.magnitude.com/

SELECT query). For efficiency reasons, the SDK also uses the Bulk Fetch API only
when the application requests multiple rows during each fetch (when the size of the
row set being requested contains at least two rows).

In its first release, the Bulk Fetch API is only supported for DSII’s that do not rely on the
SEN SDK SQLEngine for query execution. Performance is gained with “bulk fetch”
when multiple rows of bound columns are accessed and converted sequentially. The
SQLEngine on the other hand, gets the value of cells (the value of a specific column of
a specific row) on demand and might apply a different data conversion for each cell
value. This does not fit the Bulk Fetch API design.

In addition to the performance benefits listed above, bulk fetch also provides the
following advantages:

l Bulk Processors implemented in the SDK are independent of each other. A DSII
can therefore create one thread per bound column and do the bulk conversion of
all the columns in parallel. This could also include the retrieval of data if the rows
of the various columns are independent of each other (e.g. if the data store has a
columnar organization).

l Bulk Converter factories are created by the connection. The factory objects
which create the Bulk Converters are instantiated by the DSII’s connection
object (via IConnection::GetSqlToCBulkConverterFactory()) which
means the connection can determine the type of factories to create (for example,
a connection could return a factory type based on the type of server it is
connecting to). This provides more flexibility than the singleton converter factory
used under normal (non bulk fetch) data retrieval which forces all connections to
use the same type of converter.

Bulk Fetch API

This section describes the objects and methods that are related to the bulk fetch API.

Methods in IResult

These methods, defined in IResult, make up the bulk fetch API. These methods must
be implemented in your connector’s IResult class.

IsBulkFetchSupported()

This method is invoked by the Simba ODBC layer before attempting a bulk fetch, in
order to determine if bulk fetch is supported. This method takes in the indices of the
bound columns for which data is being selected, and allows the connector to tell the
Simba ODBC layer whether or not it can support bulk fetching for those columns.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
73

Core Features

http://www.magnitude.com/

If bulk fetch is not supported by your connector, then return false for
IsBulkFetchSupported. In the DSISimpleResultSet class provided by the
SDK, this method returns false and must be overridden to return true if your connector
supports bulk fetch. This class also defines a simple implementation for the
BulkFetchmethod which positions the cursor and then invokes a DoBulkFetch()
method which must be overridden to perform the bulk fetch.

BulkFetch()

This method is invoked by the Simba ODBC layer to perform a bulk fetch, when an
application requests rows for bound columns. This method takes in the number of
rows to return and a collection of IBulkProcessors. An IBulkProcessor converts
the data for multiple rows of a bound column and stores it directly into the buffers
bound to those columns by the application. Additional detail is provided below.

Additional Classes and Methods

This section summarizes the additional interfaces and classes that your connector will
use to support bulk fetch functionality. Note that default implementations are provided
for each. Additional detail for each of these components is provided later in this
section.

IBulkProcessor

This interface defines the interface for a Bulk Processor. The ODBC layer of the SDK
provides an implementation called SqlToCBulkConverterWrapper.
SqlToCBulkConverterWrapper delegates the copy-and-conversion process to an
ISqlToCBulkConverter (described below).

AbstractColumnSegment

A concrete implementation of this class is constructed by the IResult object when
the BulkFetchmethod is invoked by the Simba ODBC layer. The IResult object
will then pass this object to the IBulkProcessors for use in converting column data
from the data source. The SDK provides the following two default concrete
implementations, although applications can also implement their own:

l FixedRowSizeColumnSegment: suitable for use when the underlying data to
be retrieved is stored in a buffer in which a fixed number of bytes are allocated
per cell and the address of the cell for each successive row can be computed by
adding a constant offset to the memory pointer.

l DataLengthColumnSegment: suitable for use when the data to be retrieved is
stored in a buffer in which a variable number of bytes are allocated per cell, and
therefore the address of the next cell cannot be computed using a constant

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
74

Core Features

http://www.magnitude.com/

offset. This class stores a collection of DataLengthColumn objects each of which
describes the memory location and length of data for a particular cell.

l ServerColumnSegment: must be used when implementing bulk fetch on the
server. It is designed to optimize performance over the SimbaClient/Server wire
protocol. This class takes the following arguments:

l in_data - An array of pointers to the data
l in_lengths - an array specifying the length of each item of data in in_
data. The array value must be -1 if the corresponding data has no length (is
NULL). If the corresponding data is fixed-length type, the array value is not
used (but must be a non-negative integer). If the corresponding data is a
variable-length type, the array value must specify the length of the data, in
bytes.

l in_count - a counter specifying the length of in_data and in_lengths.

Note:

Using Bulk Fetch in SimbaClient/Server may cause issues in exposing
warnings and errors associated with fetching ResultSet data. When data is
fetched row by row, the error can be associated with a specific cell in the data,
and is returned to the client when the cursor moves to the next row. With Bulk
Fetch however, the error is returned to the client along with the bulk chunk of
data, and the error is not associated with a specific cell.

ISqlToCBulkConverter

Defines an interface for a Bulk Converter. The SDK provides a default implementation
called SqlToCBulkConverter which is (derives from) a templated functor and
performs a conversion from a SQL data type to a C data type. The SDK also #defines
hundreds of templated functor operator() methods for conversions of specific data
types. Although the use of templates per converter increases the size of the compiled
binary connector (i.e. a SqlToCBulkConverter class will be defined by the compiler
for each #defined template), it eliminates the need to subclass a converter for each
possible data type conversion and therefore eliminates virtual calls.

ISqlToCBulkConverterFactory:

Creates the ISqlToCBulkConverter object that will be used by the
IBulkProcesser object to copy and convert data for a specific column. The SDK
provides a default implementation called DSIBulkConverterFactory which,
through templates, determines the correct ISqlToCBulkConverter to return to
handle the data type of the column.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
75

Core Features

http://www.magnitude.com/

IConnection::GetSqlToCBulkConverterFactory

Invoked by the Simba ODBC layer on a connection to obtain the
ISqlToCBulkConverterFactory object that will be used to construct
theISqlToCBulkConverter objects for each SqlToCBulkConverterWrapper.
The Simba ODBC layer will create a SqlToCBulkConverterWrapper for each
column, passing the ISqlToCBulkConverterFactory to the constructor.

Settings

When supporting bulk fetch, you can allow your customers to configure additional
settings at runtime. This step is optional. For example, the following settings can be
configured in the registry or through a connection string:

l UseBulkFetch: set to 1 to enable bulk fetches, or 0 to disable.

l UseSqlEngine: must be set to 0 when enabling bulk fetches. Currently the SQL
Engine cannot be used with bulk fetches.

l ColumnSegmentId: specifies the Column Segment class that should be used
to provide information about the buffer bound by the application. Set to 1 to use
FixedRowSizeColumnSegment, 2 for the DataLengthColumnSegment, or
the ID of your custom Column Segment class (see Creating a Custom Column
Segment and Converter for more information).

One way to implement these runtime setting is to pass them in to the connector's
Connection::Connect()method. The method then passes the UseBulkFetch
and ColumnSegmentId values to the table during construction. The table then uses
these values to determine if bulk fetch is supported, and which Column Segment type
to use.

Adding Bulk Fetch to a Connector

To add bulk fetch to your connector, we recommend subclassing
DSISimpleResultSet. This is the quickest way to implement your IResult, and
provides easy access to the default implementations provided by the Simba SDK.

This section provides code samples that you can use when subclassing
DSISimpleResultSet and adding bulk fetch to your connector.

When subclassing DSISimpleResultSet, the first method to override is
IsBulkFetchSupported().This method is invoked by the Simba ODBC Layer for
each bound column in the bulk fetch, and provided with the column index. Your
connector will use this method to signal to the Simba ODBC layer whether bulk fetch is
supported for each column in the table from which data is being requested by a bulk

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
76

Core Features

http://www.magnitude.com/

fetch. If your connector does not support bulk fetch or if bulk fetch is disabled (e.g.
through a setting), then this method should always return false. The following code
snippet shows the implementation from an example DSISimpleResultSet-derived
class, XMTableLight.

bool XMTableLight::IsBulkFetchSupported(std::set<simba_
uint32>& in_boundColumnIndex)
{

UNUSED(in_boundColumnIndex);
return m_useBulkFetch;

}

This example shows the latter case where bulk fetch can be enabled or disabled. The
class stores a flag (m_useBulkFetch) which is set in the class’s constructor based
on the settings provided to it from the Simba ODBC layer (i.e. a flag indicating whether
or not the user enabled bulk fetch). IsBulkFetchSupported then returns this flag to
the ODBC layer regardless of the column index. In your connector, you will most likely
want to examine the column metadata corresponding to the column indexes provided
in in_boundColumnIndex and then decide whether or not bulk fetch is supported for
all corresponding columns for the query currently under execution.

Note:

When deriving a result set from DSISimpleResultSet, the default
implementation returns false, so DSISimpleResultSet-derived classes
don’t have to do anything if a connector doesn’t support bulk fetch. However, a
connector which directly implements IResult must implement this method and
return false if it doesn’t support bulk fetch.

The next method to implement is BulkFetch. DSISimpleResultSet provides a
BulkFetch implementation which keeps track of the current row, and delegates the
bulk fetch logic to a protected method called DoBulkFetch that your connector must
implement. The following snippet shows the BulkFetch implementation provided by
DSISimpleResultSet:

simba_unsigned_native DSISimpleResultSet::BulkFetch(
simba_unsigned_native in_rowsetSize,
const std::vector<Simba::DSI::IBulkProcessor*>& in_

bulkProcessors)
{

if (!m_hasStartedFetch)
{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
77

Core Features

http://www.magnitude.com/

// Go to the first row.
m_hasStartedFetch = true;
m_currentRow = 0;

}
else
{

// Move on to the next row.
m_currentRow++;

}
const simba_unsigned_native rowsFetched(DoBulkFetch(in_

rowsetSize, in_bulkProcessors));
if (rowsFetched > 0)
{

m_currentRow += (rowsFetched - 1);
}
return rowsFetched;

}

BulkFetch takes in the number of rows to obtain along with the collection of bulk
processors to use for each column. Note that in default implementation, the Simba
ODBC layer will pass a collection of SqlToCBulkConveterWrapper objects.

In DSISimpleResultSet’s implementation, the class manages an m_currentRow
member, which is the index of the current row to obtain data from. Since multiple bulk
fetches can be invoked where each obtains a limited number of rows, this method
begins by checking m_hasStartedFetch to determine if a previous bulk fetch has
been made. If not (i.e. this is the first bulk fetch or the cursor has been closed), m_
currentRow is set to the first row, otherwise, it is advanced to the next row in
preparation of the bulk fetch. The method then delegates the bulk fetch logic to the
DoBulkFetchmethod, and forwards the parameters to that method. DoBulkFetch
performs the bulk fetch returning the number of rows fetched. BulkFetch then
advances m_currentRow by the number of rows fetched and adjusts it (subtracts 1)
since it is zero based.

For example, the XMTableLight class derives from DSISimpleResultSet and
provides the implementation of DoBulkFetch. The following code snippets break
down the main parts of this method:

simba_unsigned_native XMTableLight::DoBulkFetch(
simba_unsigned_native in_maxRows,
const std::vector<IBulkProcessor*>& in_bulkProcessors)

{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
78

Core Features

http://www.magnitude.com/

const simba_unsigned_native firstRow(GetCurrentRow());
if (firstRow >= m_totalRows)
{

return 0;
}
const simba_unsigned_native rowsToReturn(simba_min(in_

maxRows, m_totalRows - firstRow));
const AutoVector<XMTableColumnDataBase>& columns(m_

tableData->GetDataCol());
AutoVector<IBulkProcessor>::const_iterator it(in_

bulkProcessors.begin());
const AutoVector<IBulkProcessor>::const_iterator end(in_

bulkProcessors.end());

This method begins by ensuring that m_currentRow has not been advanced passed
the end of the rows in the table. If it has (i.e. all rows have been fetched), then the
method returns 0 to indicate that no more rows are available to be fetched. The
method then determines the number of rows that will be returned by determining the
lower value of the number of rows remaining or the number of rows requested for bulk
fetch.

After this, the method prepares a collection of XMTableColumnDataBase objects
which provide access to the underlying data for each column. It then constructs an
iterator that will be used to iterate over each of the bulk processors passed to the
method by the Simba ODBC SDK, and perform the bulk fetches.

The next snippet shows the core loop where the method performs this iteration. The
purpose of this loop is to invoke the bulk fetch process on each column bound by the
application. This is accomplished by iterating through each Bulk Processor passed in
from the Simba ODBC layer, constructing the appropriate Column Segment object
based on the configuration settings, and invoking the Process method on the current
Bulk Processor, passing in the newly-constructed Column Segment describing where
the table data can be found.

for (; it != end; ++it)
{

IBulkProcessor& processor(**it);
const SelectListItem& item(GetSelectListItem
(processor.GetColumnIndex()));
const XMTableColumnDataBase& column(*columns
[item.first]);

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
79

Core Features

http://www.magnitude.com/

RightTrimmer* const rightTrimmer(item.second ? m_
rightTrimmers[item.first] : NULL);
switch (m_columnSegmentId)
{

case AbstractColumnSegment::FIXEDROWSIZE_ID:
... do fixed row size processing (see below)
break;
case AbstractColumnSegment::DATALENGTH_ID:
... do data length row processing (see below)
break;
case XMStringColumnSegment::XM_COLUMNSEGMENT_
ID:
... do row processing using a custom Column
Segment (see below)
break;

}

}

The loop starts by using the column index reported by the current Bulk Processor to
determine if the column data should be right trimmed (a typedef called
SelectListItem stores the index and a flag) and then obtains a reference to the
XMTableColumnDataBase object corresponding to the column index of the current
Bulk Processor, which contains the underlying data for the column.

A switch/case statement is then used to determine which type of Column Segment to
construct, based on the application settings:

switch (m_columnSegmentId)
{

case AbstractColumnSegment::FIXEDROWSIZE_ID:
{

std::vector<std::pair<const void*, simba_
uint32> > sourceBuffers(rowsToReturn);
simba_uint32 maximumDataSize = 0;
for (simba_signed_native index = 0; index <
rowsToReturn; index++)
{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
80

Core Features

http://www.magnitude.com/

const RowIdentifier& rowId = m_rows
[firstRow + index];
sourceBuffers[index] =
column.GetBuffer(rowId);
if (maximumDataSize < sourceBuffers
[index].second)

{
maximumDataSize = sourceBuffers

[index].second;
}

}
std::vector<simba_byte> cachedDataBuffer
(maximumDataSize * rowsToReturn);
std::vector<simba_signed_native>
cachedLengthBuffer(rowsToReturn);
simba_byte* cellPtr = &cachedDataBuffer[0];
for (simba_signed_native index = 0; index <
rowsToReturn; index++, cellPtr +=
maximumDataSize)
{

const std::pair<const void*, simba_
uint32>& sourceBuffer =
sourceBuffers[index];
if (NULL != sourceBuffer.first)
{

memcpy(cellPtr,
sourceBuffer.first,
sourceBuffer.second);
cachedLengthBuffer[index] =
sourceBuffer.second;

}
else
{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
81

Core Features

http://www.magnitude.com/

cachedLengthBuffer[index] =
CvtLength::MakeNull();

}

}
FixedRowSizeColumnSegment columnSegment(
&cachedDataBuffer[0],
maximumDataSize,
&cachedLengthBuffer[0],
sizeof(simba_signed_native),
rowsToReturn);
processor.Process(columnSegment);
break;

}
case AbstractColumnSegment::DATALENGTH_ID:
{

std::vector<DataLengthColumn>
dataLengthColumns(rowsToReturn);
for (simba_signed_native index = 0; index <
rowsToReturn; index++)
{

const RowIdentifier& rowId = m_rows
[firstRow + index];
const std::pair<const void*, simba_
uint32> columnData(column.GetBuffer
(rowId));
if (NULL == columnData.first)
{

dataLengthColumns
[index].SetAttributes(NULL,
CvtLength::MakeNull());

}
else
{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
82

Core Features

http://www.magnitude.com/

dataLengthColumns
[index].SetAttributes
(columnData.first,
columnData.second);

}

}
DataLengthColumnSegment columnSegment
(&dataLengthColumns[0], rowsToReturn);
processor.Process(columnSegment);
break;

}
case XMStringColumnSegment::XM_COLUMNSEGMENT_ID:
{

// For the SQLite custom column segment, the
conversion is specialized depending on the
// column type. So delegate the conversion to
the colum object.
column.Process(processor, m_rows, firstRow,
rowsToReturn, rightTrimmer);
break;

}
...

}

Fixed Row Size Processing

In the case of a FixedRowSizeColumnSegment, the Column Segment constructor
takes in pointers to two buffers: one containing the underlying table data stored in a
contiguous array of values, and the other containing the data length for each cell
stored for the column.

Since this sample connector does not store its underlying table data contiguously, the
code first iterates through each row starting at the first row identified above, fetching
the cell value for the column along with the size of the data, and storing it in a
temporary collection of data/length pairs. During this process it also identifies the
maximum data size, and stores it in maximumDataSize. This is used further down to
specify the offset for finding the cell for the next row, within the buffer.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
83

Core Features

http://www.magnitude.com/

The code then separates and caches these data/length pairs into the two separate
buffers required by FixedRowSizeColumnSegment. When
FixedRowSizeColumnSegment is being constructed, the buffers are passed into
the constructor along with maximumDataSize, the size of the length values (which
specifies the offset to find the next cell size value), and the number of rows to fetch.
The segment uses maximumDataSize and the size of the length values so that it
knows where to find the next element in to two buffers respectively, as it iterates
through each row.

Finally, the Column Segment is passed to the Process method of the current Bulk
Processor to bulk fetch the data for the column. Process will then use its internal
converter to convert and copy each cell to the application buffer bound to the column.
Since the Simba ODBC layer has already configured the Bulk Processor with the
location of the application buffer, the Bulk Processor already knows where the data is
to be copied to.

Note that this example is for demonstration purposes only. Since the sample
connector doesn’t store its data in the format required by the
FixedRowSizeColumnSegment class, additional overhead in terms of processing
and memory was necessary to cache the variable length data and sizes into the
buffers expected by FixedRowSizeColumnSegment. Therefore, a better solution for
this type of table data would be to use the DataLengthColumnSegment as
described next.

Data Length Row Processing

In the case of DataLengthColumnSegment, a collection of DataLengthColumn
objects are created for each cell from each row to return. DataLengthColumn is a
helper class which describes the location and length for a single cell of data, and the
DataLengthColumnSegment class requires a collection of these objects for each
row to return, along with the total number of rows to return.

In the example snippet, the code iterates through each row, obtaining the row’s ID and
invoking column.GetBuffer to obtain the address where the cell’s data is stored for
that row. This address is stored a temporary pair object which takes in and stores the
location of the cell data, and automatically computes the sizeof the data based on the
second template parameter. Note that for simplicity, this example assumes that the
column contains integer data. In your connector, it may be necessary to compute or
obtain the length of cell data based on the type of data stored in the column (e.g.
variable length character data), rather relying on sizeof.

This information is then passed to the DataLengthColumn object via the
SetAttributesmethod. After the collection of DataLengthColumn objects has
been created, it’s passed along with the row count to return to a new

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
84

Core Features

http://www.magnitude.com/

DataLengthColumnSegment which in turn, is passed to the Bulk Processor to
perform the bulk fetch.

As this example shows, the use of DataLengthColumnSegment is a better solution
for the sample XMTableLight class than FixedRowSizeColumnSegment,
because XMTableLight stores its data in non-contiguous arrays and can easily and
more quickly describe the location and size of each cell by simply populating a
collection of DataLengthColumn objects.

Also note the use of the CvtLength class. This utility class provides methods which
allow the DSII to encode and decode the length of the data before and after data
conversion. This is necessary because the encoded length must be used when
creating Column Segments. Bulk Converters use this length to detect cases when
data is null or was not successfully retrieved from the data source. Custom Bulk
Converters also need to use this class when setting the target length resulting from the
conversion. The following list outlines the various cases that the CvtLength class
handles:

l Normal length: the length of data that is not null and was successfully converted
(no truncation required).

l Truncated length: the length of data was either truncated during data retrieval or
data conversion.

l Null value: a null value was retrieved from the data source. Note that null values
are not passed to the conversion functors in the SqlToCBulkConverter
template that handles the SDK Column Segment implementations (see
SqlToCBulkConverter.h). For optimization reasons, the Conversion
Functors do not handle null values and most of them will assert in debug mode or
generate an invalid value in release mode. Therefore the same must be done in
the implementation of a custom Column Segment.

l Retrieval error: used if the value of a cell cannot be retrieved successfully from
the data source. The default behaviour of the Column Segment implementations
provided by the SDK is to generate a retrieval error diagnostic. A DSII could
however decide to discard the row (not referencing it in the column segment) or
terminate the Bulk Fetch operation. The recommended approach is to handle it
in the same way as when encountering a retrieval error during a single cell fetch.

For more information about the various methods available, see CvtLength.h.

Row Processing using Custom Column Segment

The final case statement in the example, checks for a custom Column Segment ID and
the delegates the Bulk Fetch to the XMTableColumnDataBase object’s Process
method which has been set up to use a custom Column Segment. Information on
creating and using a custom Column Segment is provided next.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
85

Core Features

http://www.magnitude.com/

Creating a Custom Column Segment and Converter

The FixedRowSizeColumnSegment and DataLengthColumnSegment classes
provided by the SDK can be used by most connectors for bulk fetch because they
describe data in both fixed-length, and variable-length storage respectively. However,
developers are free to implement their custom Column Segment classes to improve
efficiency or provide additional convenience in specifying where data is located.

For example you could implement your column segment and StringColumnSegment
to provide direct access to your data address/length mappings, rather than requiring
the DSII to copy pointers/lengths into an intermediate buffer.

The following steps describe how to create and use a custom Column Segment:

1. Derive a new class from AbstractColumnSegment for your custom Column
Segment ensuring that at a minimum, the constructor takes in a number of type
simba_unsigned_native, which will be used to specify the number of rows
that are to be retrieved for a given bulk fetch. Additional parameters can also be
added as required by your connector. For example, XMColumnSegment also
takes in a reference to the underlying column data, a reference to the row ID’s
from which to obtain data, and the row number of the starting row:

XMColumnSegment(
const std::map<RowIdentifier, T>& in_columnData,
const std::vector<RowIdentifier>& in_rows,
simba_unsigned_native in_startRow,
simba_unsigned_native in_numRows) :
AbstractColumnSegment(XM_COLUMNSEGMENT_ID, in_numRows),
m_columnData(in_columnData),
m_rows(in_rows),
m_startRow(in_startRow)
{

// Do nothing.

}

2. Generate a unique “strategy” ID for the new class and pass this to
AbstractColumnSegment’s constructor (note that ID’s less than
AbstractColumnSegment::STARTCUSTOM_ID are reserved by the SDK).
For example, XMColumnSegment defines this ID as a static member called XM_
COLUMNSEGMENT_ID and then passes it to AbstractColumnSegment
constructor in the member initialization list. This is used by the Bulk Converter to
determine which type of concrete Column Segment has been passed to it.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
86

Core Features

http://www.magnitude.com/

3. Modify your implementation of your IResult’s BulkFetchmethod (or
DoBulkFetch if subclassing from DSISimpleResultSet) to perform or
delegate the bulk fetch process. Since the SQLite sample connector
demonstrates the use of different Column Segment types based on that
specified in its connector settings, it uses a switch/case statement in
XMTableLight::DoBulkFetch to check which Column Segment type was
specified and delegates accordingly. For example, if
XMStringColumnSegment::XM_COLUMNSEGMENT_ID was specified in the
connector’s settings (stored in the class’s m_columnSegmentIdmember), it
delegates the bulk fetch to an XMTableColumnDataBase object:

switch (m_columnSegmentId)
{

....
case XMStringColumnSegment::XM_COLUMNSEGMENT_ID:
{

column.Process(processor, m_rows,
firstRow, rowsToReturn, rightTrimmer);
break;

}
...

}

Note:

Connectors requiring their own custom Column Segment implementation
will always use their implementation rather than perform the check, as
was illustrated above, to determine the type. However a connector could
implement different column segment types depending on the metadata of
the column or mix the use of SDK Column Segments for some columns
with custom Column Segments for other columns.

4. Instantiate your custom Column Segment, and pass it to the Bulk Processor’s
Process method to perform the bulk fetch. For example, the
XMTableColumnDataBase object’s Processmethod instantiates an
XMColumnSegment and passes it directly to the Bulk Processor’s Process
method:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
87

Core Features

http://www.magnitude.com/

template<typename T> void XMTableColumnData<T>::Process(
Simba::DSI::IBulkProcessor& in_bulkProcessor,
const std::vector<RowIdentifier>& in_rows,
simba_unsigned_native in_startRow,
simba_unsigned_native in_numRows,
RightTrimmer* in_rightTrimmer) const

{
UNUSED(in_rightTrimmer);

in_bulkProcessor.Process(XMColumnSegment<T>(m_
dataColumn, in_rows, in_startRow, in_numRows));
}

5. Implement a custom ISqlToCBulkConverter class which can perform a
conversion using your custom Column Segment class. For example, a connector
might implement a XMSqlToCBulkConverter class to handle conversions for
XM’s underlying database. Its Convertmethod iterates through each row to
fetch, invoking XMColumnSegment::GetData to return the address and data
size for a cell from the underlying data source as a pair. It then uses that
information to perform the fetch and conversion of data for the cell by invoking
the conversion functor operator():

for (
simba_unsigned_native row = columnSegment.m_startRow,
endRow = row + columnSegment.GetNumberRows();
row < endRow;
++row, ++currentRow1Based, targetPtr += in_toDataOffset,
targetLenPtr = reinterpret_cast<simba_signed_native*>
(reinterpret_cast<simba_byte*>(targetLenPtr)+in_
toLengthOffset))
{

const std::pair<const void*, simba_uint32> data(columnSegment.GetData
(rowIDs[row % numRowIDs]));

if (!data.first)

{

*targetLenPtr = CvtLength::MakeNull();

}

else

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
88

Core Features

http://www.magnitude.com/

{

*targetLenPtr = in_toDataLength;

(*this)(

data.first,

data.second,

targetPtr,

*targetLenPtr,

in_listener);

}
}

6. Create a mapping between your custom converter and all SQL types that it
should convert. In the SQLitesample connector, the
XMSqlToCBulkConverterWrapperMap defines the mapping between the
SQL types the connector supports and the template class (implementing
ISqlToCBulkConverterWrapper) with which to wrap the functors for that
destination SQL type.

7. Create a custom class template with the same interface as
DefaultSqlToCBulkBuilderFuncGenerator (provided by the SDK). For
convenience, you can reuse some definitions from
DSISqlToCBulkBuilderFuncGenerator.h. The struct must have a static
GetBuildermethod which takes in a reference to an IConnection and
returns a new SqlToCBulkBuilderFunction.
SqlToCBulkBuilderFunction is a pointer to a factory function used by a
Bulk Converter factory to create the converter. The following sample shows one
way of implementing this functionality:
template <TDWType SqlType, TDWType SqlCType> struct
XMSqlToCBulkBuilderFuncGenerator{static
SqlToCBulkBuilderFunction GetBuilder
(Simba::DSI::IConnection& in_connection){

return Simba::DSI::Impl::SqlToCBulkBuilderFuncGenerator<

Simba::DSI::Impl::SENSqlToCConversionSupport<SqlType,
SqlCType>::IsSupported,

SqlType,

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
89

Core Features

http://www.magnitude.com/

SqlCType,

Simba::DSI::Impl::DSISqlToCBulkConverterFunctorMap,

XMSqlToCBulkConverterWrapperMap,

CharToCharIdentEncCvtFunctor,

CharToFromWCharCvtFunctor>::GetBuilder(in_connection);

}
};

This method delegates the creation to the SDK’s
SqlToCBulkBuilderFuncGenerator::GetBuilder method, but passes the
XMSqlToCBulkConverterWrapperMap type as a template parameter.

8. Override or modify the GetSqlToCBulkConverterFactorymethod in your
DSIConnection-derived class so that it instantiates a new
DSISqlToCBulkConverterFactory using your custom
SqlToCBulkBuilderFunction function. The following code snippet shows
the implementation of
XMConnection::GetSqlToCBulkConverterFactory which first checks if
a factory has been created, and if not, checks to see if the SQLite Column
Segment ID was specified. If it was specified, then a new
DSISqlToCBulkConverterFactory is created using XM’s custom
XMSqlToCBulkBuilderFuncGenerator as the template type:

const ISqlToCBulkConverterFactory&
XMConnection::GetSqlToCBulkConverterFactory(

{
if (m_sqlToCBulkConverterFactory.IsNull())
{

if (XMStringColumnSegment::XM_COLUMNSEGMENT_ID ==
m_XMSettings.m_columnSegmentId)

{
m_sqlToCBulkConverterFactory.Attach(

new
DSISqlToCBulkConverterFactory<XMSqlToCBulkBuilderFuncGene
rator>(*this));

}
else
{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
90

Core Features

http://www.magnitude.com/

DSIConnection::GetSqlToCBulkConverterFactory();
}

}
 return *m_sqlToCBulkConverterFactory;
}

Creating a Custom Conversion Functor

A conversion functor is an object that defines the operator()method for an
ISqlToCBulkConverter implementation, to convert a specific SQL type to a
specific C type. More specifically, it performs the conversion and copying of a single
data cell of a specific data type, from the source to the target locations passed to it by
the SqlToCBulkConverterWrapper that contains the converter and invokes its
operator().

The SDK defines a generic conversion functor template class called SqlToCFunctor
along with templated operator() methods for all SQL-to-C data type conversions
supported by the SDK, however developers are free to extend or create customized
functors (e.g. to convert a special data type in your connector).

Note:

Extending or customizing functors can be done independently of creating a
custom Column Segment. A custom Column segment doesn’t require a
custom conversion functor, and a custom conversion functor does't require a
custom Column segment.

The following outlines the steps required to add an operator()method:

1. Define a new functor class, similar to SqlToCFunctor. This class can optionally
be a template class which takes in template parameters specifying the SQL and
C types to convert from and to. This class must also define operator() with
the same parameters that SqlToCFunctor’s operator() takes in:

void operator()(

const void* in_source,

simba_signed_native in_sourceLength,

void* in_target,

simba_signed_native& io_targetLength,

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
91

Core Features

http://www.magnitude.com/

IConversionListener& in_listener);

2. Create a new mapping between the converter and functor by defining a
templated structure which maps the SQL and C types for which the functor is to
convert. The SDK defines the following default mapping for the basic SQL-to-C
conversions:

template <TDWType SqlType, TDWType SqlCType>
struct DSISqlToCBulkConverterFunctorMap
{
 typedef SqlToCFunctor<SqlType, SqlCType> Type;
};

A connector can then extend this map as required. For example, a connector
could define functor classes called CustomCharConversionFunctor and
CustomIntToStringConversionFunctor to perform custom conversions of
characters and integers to strings respectively, after which, the following maps
could be defined:

template <TDWType SqlType, TDWType SqlCType>
struct CustomSqlToCBulkConverterFunctorMap
{
 typedef DSISqlToCBulkConverterFunctorMap<SqlType, Sql
CType> Type;
};
template <TDWType SqlCType>
struct CustomSqlToCBulkConverterFunctorMap<TDW_SQL_
CHAR, SqlCType>
{
 typedef CustomCharConversionFunctor<SqlCType> Type;
};
template <>
struct CustomSqlToCBulkConverterFunctorMap<TDW_SQL_
SINTEGER, TDW_C_CHAR>
{
 typedef CustomIntToStringConversionFunctor Type;
};

3. Specify the mapping in your SqlToCBulkBuilderFuncGenerator’s
GetBuilder()method. The following code snippet shows the SQLitesample’s
custom GetBuilder()method:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
92

Core Features

http://www.magnitude.com/

struct XMSqlToCBulkBuilderFuncGenerator
{
 static SqlToCBulkBuilderFunction GetBuilder
(Simba::DSI::IConnection& in_connection)

{
 return
Simba::DSI::Impl::SqlToCBulkBuilderFuncGenerator<
 Simba::DSI::Impl::SENSqlToCConversionSupport<SqlTyp
e, SqlCType>::IsSupported,
 SqlType,
 SqlCType,
 Simba::DSI::Impl::DSISqlToCBulkConverterFunctorMap,
 XMSqlToCBulkConverterWrapperMap,
 CharToCharIdentEncCvtFunctor,
 CharToFromWCharCvtFunctor>::GetBuilder(in_
connection);
 }
 };

The parameter:
Simba::DSI::Impl::DSISqlToCBulkConverterFunctorMap can
replaced with the mapping created in the previous step, for example,
CustomSqlToCBulkConverterFunctorMap.

For more information on optimizing data retrieval, see
http://www.simba.com/blog/optimization-of-odbc-data-retrieval-with-the-simbaengine-
sdk/

Parsing ODBC and JDBC Escape Sequences

Many SQL-enabled data stores represent data and implement SQL in slightly different
ways. To allow applications to handle these differences transparently, the ODBC and
JDBC standards specifies a set of escape sequences to represent functionality such
as date, time, scalar functions, and procedure calls. ODBC and JDBC connectors
must translate these escape sequences into a format that their data store supports.

The Simba SDK includes the MiniParser feature to help developers parse SQL
commands for escape sequences, then replace them with the command format
understood by their data store. SQL commands can contain multiple escape
sequences with multiple parameters, and escape sequences themselves can be
nested. The MiniParser implements all of the recursive processing and the creation of
complex regular expressions required to support escape sequences. Using the Simba

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
93

Core Features

http://www.simba.com/blog/optimization-of-odbc-data-retrieval-with-the-simbaengine-sdk/
http://www.simba.com/blog/optimization-of-odbc-data-retrieval-with-the-simbaengine-sdk/
http://www.magnitude.com/

SDK, it is easy for your connector to translate SQL commands containing complex,
nested escape sequences into a format that your data store understands.

ODBC and JDBC Escape Sequences

Escape sequences are grouped into types, making them easier to parse and process.
Notice they are all enclosed in curly braces ({ }). For example, some common
escape sequences are shown below:

Escape sequence type Format Example

date {d 'value'} {d '2001-01-01'}

scalar function {fn scalar-function}

{ fn
DAYOFWEEK(
DATE '2000-01-
01') }

procedure call {[?=]call procedure-name[([para-
meter][,[parameter]]...)]}

{?=call LENGTH
('hello world')}

For information about the complete set of ODBC escape sequences, see "ODBC
Escape Sequences" in the ODBC Programmer's Reference:
https://msdn.microsoft.com/en-us/library/ms711838(v=vs.85).aspx. For information
about JDBC escape sequences, see http://docs.oracle.com/cd/E13222_
01/wls/docs91/jdbc_drivers/sqlescape.html.

Note:

The Simba SDK handles all escape sequences in the ODBC and JDBC
specification.

Converting Simple Escape Sequences

Connectors must locate escape sequences and convert them to commands that are
understood by their data source.

Simple Example: Dates

Consider a SQL command that contains an escape sequence of type date:
SELECT OrderNum, OrderDate FROM Orders WHERE OrderDate = {d
'2015-08-12'}

A PostgreSQL connector converts the command as:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
94

Core Features

https://msdn.microsoft.com/en-us/library/ms711838(v=vs.85).aspx
http://docs.oracle.com/cd/E13222_01/wls/docs91/jdbc_drivers/sqlescape.html
http://docs.oracle.com/cd/E13222_01/wls/docs91/jdbc_drivers/sqlescape.html
http://www.magnitude.com/

SELECT OrderNum, OrderDate FROM Orders WHERE OrderDate = DATE
'2015-08-12'.

A Microsoft SQL connector converts the command as:
SELECT OrderNum, OrderDate FROM Orders WHERE OrderDate ='08-
12-2015'.

Converting Complex Escape Sequences

Escape sequences can be nested, requiring recursive programming to replace them
correctly.

Complex Example: Nested Escape Sequences

Given an escape sequence with the following format:
{fn EXTRACT(YEAR FROM {ts '2001-02-03 16:17:18.987654'}) }

A PostgreSQL connector converts the command as:
EXTRACT(YEAR FROM TIMESTAMP '2001-02-03 16:17:18.987654')

Non-Escaped Scalar Functions

Some applications use ODBC scalar functions in a SQL command without enclosing
the function in an escape clause. For example, an application might use CONVERT
(sqltype,value) instead of {fn CONVERT(value, odbctype)}. The
miniParser handles the CONVERT scalar function in non-escaped form. Currently,
other non-escaped scalar functions are not handled.

MiniParser Architecture

The miniParser is included in the Support package of the Simba SDK. It is composed
of two main classes:

ODBC Architecture:

l ODBCEscaper: searches the SQL command for ODBC escape sequences and
parameters. To use this class, pass an IReplacer implementation and the SQL
command to ODBCEscaper.Apply().

l IReplacer: converts each type of escape sequence to the format required for a
particular data store. Override this class to provide your own implementation.

This architecture is shown in the figure below:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
95

Core Features

http://www.magnitude.com/

JDBC Architecture:

l JDBCEscaper: searches the SQL command for JDBC escape sequences and
parameters. To use this class, pass an IReplacer implementation and the SQL
command to JDBCEscaper.Apply().

l IReplacer: converts each type of escape sequence to the format required for a
particular data store. Override this class to provide your own implementation.

Error Handling

This section explains how ODBCEscaper handles errors and malformed SQL
statements.

Text in unsupported locations is discarded

If a SQL statement is incorrectly formed and contains text in unsupported locations,
ODBCEscaper will discard the text. For example, the escape sequence {fn ABS
(myNum) bad string} is incorrectly formed, as no text is allowed after the function
name. In this case, ODBCEscaper will discard the text bad string.

Incorrectly formatted escape sequences are not sent to IReplacer

If an escape sequence is incorrectly formatted, ODBCEscaper will not pass it through
to IReplacer, and will leave it unchanged. For example, {D 2001-1-1} is
incorrectly formatted because it does not contain quotation marks (''). The incorrect
escape sequence is simply included in the final SQL command. This allows the data
store to handle the incorrect command sequence with the appropriate error.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
96

Core Features

http://www.magnitude.com/

Example Workflow

The following diagram shows how the ODBCEscaper and a sample IReplacer
implementation, PGOReplacer, work together to convert a SQL statement containing
parameters and escape sequences into a SQL statement for a PostgreSQL data store.

Note:

The work flow is the same for JDBCEscaper.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
97

Core Features

http://www.magnitude.com/

1. The connector calls ODBCEscaper.Apply(), passing in the SQL command
SELECT {fn char(0x30 + { fn ceiling(?)} + ? + {fn

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
98

Core Features

http://www.magnitude.com/

sansargs}) } --!?. This command contains nested functions, a custom
(non-ODBC) function, and a comment string.

2. ODBCEscaper starts with the inner most escape sequence, {fn ceiling
(?)}. First, it tells PGOReplacer to create the parameter marker.

3. PGOReplacer creates and returns the first parameter marker in the format that
the PostgreSQL data store understands.

4. ODBCEscaper then tells PGOReplacer to handle {fn ceiling(?)}, passing
in the first converted parameter, ($1).

5. PGOReplacer converts the ceiling function to CEIL as required by the
PostgreSQL data store, and uses the parameter marker ($1) in the function.

6. This process repeats until IReplacer converts all the escape sequences and
parameter markers. Then ODBCEscaper reassembles the SQL command,
including the comment and the string.

The original SQL command is now converted into a SQL command that PostgreSQL
data store can understand.

Example Implementation

This section shows an example implementation of IReplacer for a custom ODBC or
JDBC connector. The following steps are required:

l Step 1: Implement Your Custom IReplacer
l Step 2: Create an Instance of ODBCEscaper
l Step 3: Ensure Additional Requirements are Met

Step 1: Implement Your Custom IReplacer

Implement your IReplacer to convert ODBC standard escape sequences to the
commands that your data store understands.

Note:

l For Java, use JDBCEscaper instead of ODBCEscaper. All other
methods and techniques shown in this section are the same.

l In this example, IReplacer handles a subset of the possible ODBC
escape sequences. Typically, your custom ODBC connector implements
the complete set of ODBC escape sequences described in
https://docs.microsoft.com/en-us/sql/odbc/reference/appendixes/odbc-
escape-sequences.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
99

Core Features

https://docs.microsoft.com/en-us/sql/odbc/reference/appendixes/odbc-escape-sequences
https://docs.microsoft.com/en-us/sql/odbc/reference/appendixes/odbc-escape-sequences
http://www.magnitude.com/

Example

#include <Simba.h>
#include <ODBCEscaper.h>
static char const* keyword[] = {

"DATE ", "ESCAPE ", "TIME "
};
class MyReplacer : public IReplacer
{

MyReplacer()
{

m_numParams = 0;
}
simba_wstring operator()(ODBCEscaper::ESC_TYPE in_
etype, std::vector<simba_wstring>& args)
{

switch (in_etype)
{
// Date, Time, and Timestamp Escape Sequences
case ODBCEscaper::ESC_TYPE_DATE:
case ODBCEscaper::ESC_TYPE_ESCAPE:
case ODBCEscaper::ESC_TYPE_TIME:
{

return simba_wstring(keyword[in_etype -
ODBCEscaper::ESC_TYPE_DATE]) + args[0];
}
break;
// Here replace ? with ($1)....
case ODBCEscaper::ESC_TYPE_PARAM:
{

char buf[99];
sprintf(buf, "($%d)", ++m_
numParams);
// implicit conversion to simba_
wstring
return buf;

}
break;

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
100

Core Features

http://www.magnitude.com/

//Scalar Functions Escape sequences.
case ODBCEscaper::ESC_TYPE_FN:
{

if (args[0].IsEqual("CEILING",
false))
{
args[0] = "CEIL";
}
else if (args[0].IsEqual("CHAR",
false))
{
args[0] = "CHR";
}
else if (args[0].IsEqual("POWER",
false))
{
args[0] = "POW";
}
if ((args[0].IsEqual("CONVERT",
false)) && (3 == args.size()))
{
args[0] = "CAST";
}
return args[0] + "(" + simba_
wstring::Join(args.begin() + 1,
args.end(), ", ") + ")";

}
break;
// Handling the non-escaped scalar functions:
Note different argument order.
case ODBCEscaper::ESC_TYPE_FUNC:
{

if ((args[0].IsEqual("CONVERT",
false)) && (3 == args.size()))
{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
101

Core Features

http://www.magnitude.com/

return "CAST_RAW(" + args[2] +
" AS " + args[1] + ")";

}
}
break;
// unimplemented Escape Types.
default:
{

return simba_wstring("TODO: ")
+ ODBCEscaper::type_name[in_etype];

}
break;
}

}

}
private:

int m_numParams;
};

Step 2: Create an Instance of ODBCEscaper

ODBCEscaper or JDBCEscaper handles the parsing of the SQL command,
identifying parameter markers and escape sequences while passing over the contents
of strings, identifiers and comments. It passes each parameter marker and escape
sequence to IReplacer, along with the type and argument information. IReplacer
returns the converted command.

Parsing is done from left to right, and in the case of nested escape sequences, from
the inner to the outer brackets. When the parsing and replacements are finished,
ODBCEscaper or and JDBCEscaper reassemble the SQL command, adding back
any strings or comments.

Create an instance of ODBCEscaper, then call ODBCEscaper.Apply(), passing a
instance of your custom IReplacer and the SQL command to parse and convert.
Because IReplacermaintains state for the duration of a SQL command, you must
create a new IReplacer for each SQL command that you want to parse.

Example:
ODBCEscaper esc;
MyReplacer replacer;
simba_wstring newSQLstr;

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
102

Core Features

http://www.magnitude.com/

// newSQLstr will contain the converted SQL command
simba_wstring newSQLstr = esc.Apply(replacer, "SELECT {fn LOG
({fn LOG10({fn POWER(10,2)})})}");

Step 3: Ensure Additional Requirements are Met

This section contains additional information and requirements for implementing your
IReplacer.

Return commands that are not ODBC or JDBC compliant

If IReplacer encounters a command escape sequence that is not part of the ODBC
or JDBC specification, it should return the command back to ODBCReplacer without
modification. This is illustrated in the "Workflow" section in Parsing ODBC and JDBC
Escape Sequences, as the parameter sansargs is not ODBC compliant.

Maintain a parameter count

Your IReplacer implementation must keep track of the number of parameter
markers it returns so that it can increment them correctly. For example, “@1”, “@2”,
“@3”, or ($1), ($2), ($3).

Reject unknown input

If your IReplacer implementation receives input that it does not know how to handle,
it must throw an exception or return the string in curly brackets ({ }).

Important:

For security reasons, an IReplacermust never return a string that forces a
syntax error.

Return an expression in parenthesis or surrounded by spaces

Where possible, the commands or expressions that your IReplacer returns should
be surrounded by parentheses (()) or spaces (). This allows the ODBCEscaper to
correctly reassemble the SQL command. The IReplacer sample surrounds the
commands and parameters with parentheses. For example, when returning the value
[‘4:05’::TIME], format the value in one of the following ways:

l [‘4:05’::TIME] // notice the spaces
l Or, [(‘4:05’::TIME)] // notice the parenthesis

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
103

Core Features

http://www.magnitude.com/

Ensure correct syntax

In order for ODBCReplacer to correctly parse and reassemble the SQL statement, the
IReplacer implementation must always return parameters and converted escape
sequences that contain correct syntax.

Important:

IReplacermust not return an odd number of quotes, an unterminated
comment, or mismatched parentheses.

Related Topics

Non-Escaped Scalar Functions

Error Handling

Native Syntax Queries

When using the Simba SQLEngine with a datasource that is SQL enabled or supports
another query language, the NATIVE ODBC escape sequence can be used to embed
a query the datasource in its native syntax language.

For example:

{NATIVE ‘SELECT Column1 FROM NativeTable’ COLUMNS(Col1
VARCHAR(25))}

To add this functionality to your ODBC driver, make the following changes:

Note:

Corresponding class and function names from the SQLite sample driver are
noted in square brackets.

1. Modify your CustomerDSIIDataEngine [SLDataEngine] object to
override and implement the virtual method CreateNativeResultSet() to
return a CustomerDSIINativeResultSet [SLNativeResultSet]. This
method is responsible for preparation of the native result, but not execution.

2. Implement the virtual methods of your CustomerDSIINativeResultSet:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
104

Core Features

http://www.magnitude.com/

a. Execute: This is responsible for actual execution of the native query and
producing a DSIExtResultSet. Input parameters, if any, are passed to
this function.

b. UpdateColumnMetadata: This is responsible for reporting changes to
any column metadata when the actual result columns of the native result
are different than the COLUMNS clause of the query. In the simple
example above, if NativeTable.Column1 is actually a SQL_INTEGER,
that can be described here so that the Simba SQLEngine can perform the
necessary conversion.

c. UpdateParameterMetadata: This is responsible for making changes
to any parameter metadata when the actual parameters of the native result
are different than the PASSING clause of the query.

d. GetBookmarkSize: Return the bookmark size that will be used by the
DSIExtResultSet returned by execution.

e. GetColumns (Optional): This is responsible for reporting all the column
metadata if the COLUMNS clause of the query is empty.

Native Value Expressions

When using the Simba SQLEngine with a datasource that is SQL enabled or supports
another query language, the NATIVE ODBC escape sequence can also be used to
embed a query to the datasource in its native syntax language as a scalar value in a
SQL query. Native queries used for this must produce only a single row with a single
column.

For example:

SELECT {NATIVE ‘SELECT Column1 FROM NativeTable LIMIT 1’
RETURNING VARCHAR(25) } AS NativeCol1, Col2 FROM
NonNativeTable

To add this functionality to your ODBC driver, make the following changes:

Note:

Corresponding class and function names from the SQLite sample driver are
noted in square brackets.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
105

Core Features

http://www.magnitude.com/

1. Modify your CustomerDSIIDataEngine [SLDataEngine] object to
override and implement the virtual method CreateNativeValueExpression
() to return a CustomerDSIINativeValueExpression
[SLNativeValueExpression]. This method is responsible for preparation of
the native value, but not execution.

2. Implement the virtual methods of your
CustomerDSIINativeValueExpression:

a. Execute:This is responsible for actual execution of the native query and
producing a INativeValuePtr. This will be a new class implemented in
step 3 below. Input parameters, if any, are passed to this function.

b. UpdateReturningMetadata: This is responsible for reporting changes
to any metadata of the returned value when the actual result of the native
result is different than the RETURNING clause of the query. In the simple
example above, if NativeTable.Column1 is actually a SQL_INTEGER,
that can be described here so that the Simba SQLEngine can perform the
necessary conversion.

c. UpdateParameterMetadata: This is responsible for making changes to
any parameter metadata when the actual parameters of the native result
are different than the PASSING clause of the query.

3. Implement an INativeValuePtr as CustomerDSIINativeValue
[SLNativeValue]. Only one method needs to be implemented on this class:
RetrieveData. This will retrieve a value for the native expression into the
ETDataRequest object.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
106

Core Features

http://www.magnitude.com/

Errors, Exceptions, and Warnings

This section explains how to implement the classes that handle errors, exceptions,
and warnings. It also explain how to use and localize the files that contain error
messages. Error message files are available in several different languages.

Handling Errors and Exceptions

ODBC, JDBC, and ADO.NET require that connector provide standard error codes so
that applications have a standard way of dealing with error conditions. Data stores can
also provide their own custom error codes. This section explains what your custom
connector should do when it encounters an error or an exception.

Using the ErrorException Class

When your DSII detects an error condition, it should throw an exception of type
ErrorException. This class has the following signature:
ErrorException(

DiagState in_stateKey,

simba_int32 in_componentId,

const simba_wstring& in_msgKey,

simba_signed_native in_rowNum = NO_ROW_NUMBER,

simba_int32 in_colNum = NO_COLUMN_NUMBER);

The parameters for this method are described below:

l in_componentId

The component id is used to determine which component threw the exception
and where the message should be loaded from. The list of reserved component
Ids (1-10) and their names can be found in SimbaErrorCodes.h. It is
suggested that any custom component Id you define for your DSII start counting
from 100.

l in_msgKey

The in_msgKey argument is a string shortcut to indicate which message to load
from the standard error message file or your own custom message source. For
information about error message files, see Localizing Messages.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
107

Errors, Exceptions, and Warnings

http://www.magnitude.com/

l in_stateKey

The in_stateKey argument is used to control which SQLSTATE code should be
associated with the error returned by ODBC. SQLSTATE is a 5-character
sequence defined by SQL standards that is used to return a standard error code.
The most common state to throw is DIAG_GENERAL_ERROR. A full list of
available DiagState keys can be found in DiagState.h.

Exception Macros in the Sample Connectors

The Quickstart sample connector provides sample macros that you can adapt to throw
your own exceptions. These macros are defined in Quickstart.h. For information
on using Quickstart, see the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/.

Example: Using Quickstart's Exception Macro

In the sample Quickstart connector, the following macro is used to throw an exception
if the required DBF setting is missing:

QSTHROW(DIAG_INVALID_AUTH_SPEC, L"QSDbfNotFound");

This throws an ErrorException with a DiagState of DIAG_INVALID_AUTH_
SPEC and the QSDbfNotFoundmessage key. The macro automatically includes the
Quickstart component Id.

Some messages are also parameterized, and there are sample macros to assist in
constructing the vector of parameters before throwing the exception.

Example: Throwing an Exception With Parameters

This example throws an ErrorException with a DiagState of DIAG_GENERAL_
ERROR and the QSInvalidCatalogmessage key.

QSTHROWGEN1(L"QSInvalidCatalog", in_schemaName);

in_schemaName is a simba_wstring parameter that is added to a vector and
passed to a constructor for ErrorException, which accepts a parameter vector. The
message source will use the parameter vector to do string substitution on special
markers in the message string.

Using or Building a Message Source

All exceptions and warnings in your custom connector are looked up by their message
key using an IMessageSource constructed by your custom connector. An
implementation of this class, called DSIMessageSource, is provided to handle
looking up any message key generated by SDK components. This class looks up the
messages in the error messages files. The error message files are located in the

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
108

Errors, Exceptions, and Warnings

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

directory [INSTALL_DIRECTORY]\DataAccessComponents\ErrorMessages.
The connector determines the location of this file by looking up the
ErrorMessagesPath value in the registry at HKLM\Software\<OEM
NAME>\Driver\, or inside the configuration file on Linux, Unix, or macOS platforms.

In order to provide messages of your own, you must register an error messages file
with DSIMessageSource or construct your own MyDSIIMessageSource class
deriving from IMessageSource. If you use DSIMessageSource, you will only be
responsible for providing an XML message file for all of the messages your DSII uses.
If you derive from IMessageSource, you will be responsible for looking up any
message key generated by either the SDK or your DSII.

All of the sample connectors register an additional message file with the default
DSIMessageSource, and it is recommended that your DSII do the same unless there
is good reason to do otherwise. The error messages XML files are placed in directories
named after the locale that the message files are associated with, for example,
[INSTALL_DIRECTORY]\DataAccessComponents\ErrorMessages\en-US.

For information about error message files, see Including Error Message Files.

Custom SQL States

SQLSTATE is a 5-character sequence defined by SQL standards. It provides detailed
information about the cause of a warning or error. The Simba SDK attempts to return
SQL states, or equivalent, that accurately follow the specifications of ODBC, JDBC,
and ADO.NET. However, in some cases your custom connector may need to return a
different SQL state than what is used by the SDK. In those cases, your DSII will return
a custom SQL state as described in the this section:

ODBC

Exceptions are implemented in the ErrorException base class. The predefined
SQL states are mapped to DiagStates, and there are constructors that take a
DiagState along with other information for this purpose. When using custom SQL
states, use the constructors that take a simba_string for the SQL state to provide
any 5 character SQL state.

Likewise, warnings with custom SQL states will post warnings to the
IWarningListener using the simba_string constructor instead of the
DiagState constructor.

JDBC

Exceptions are implemented in the DSIException base class. The predefined SQL
states are mapped to ExceptionID, and there are constructors that take an
ExceptionID along with other information for this purpose. When using custom SQL

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
109

Errors, Exceptions, and Warnings

http://www.magnitude.com/

states, use the constructors that take a String for the SQL state to provide any 5
character SQL state.

Likewise, warnings with custom SQL states will post warnings to the
IWarningListener using a Warning constructed with the String constructor
instead of the WarningCode constructor.

ADO.NET

Exceptions are implemented in the DSIException base class. Note that SQL states
are not directly supported by the ADO.NET API. Instead, the custom SQL state is
prepended to the exception error message. The predefined SQL states are mapped to
ErrorCode, and there are constructors that take an ErrorCode along with other
information for this purpose. When using custom SQL states, use the constructors that
take a string for the SQL state to provide any 5 character SQL state.

Likewise, warnings with custom SQL states will post warnings to the
IWarningListener using the string constructor instead of the WarningCode
constructor.

OLE DB

SQL states, custom or not, are exposed using the custom error object through the
ISqlErrorInfo interface. For details on the ISqlErrorInfo interface, see
http://msdn.microsoft.com/en-
us/library/windows/desktop/ms711569%28v=vs.85%29.aspx. Also, refer to the topic
How a Provider Returns an OLE DB Error Object in MSDN at
http://msdn.microsoft.com/en-
us/library/windows/desktop/ms723101%28v=vs.85%29.aspx.

Related Topics

Posting Warning Messages

Including Error Message Files

Localizing Messages

Posting Warning Messages

The Simba SDK supports warning messages in a similar way as it supports error
messages.

Using the IWarningListener interface

You can post warnings to an IWarningListener interface. The
DataStoreInterface core classes, DSIEnvironment, DSIConnection and

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
110

Errors, Exceptions, and Warnings

http://msdn.microsoft.com/en-us/library/windows/desktop/ms711569(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms711569(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms723101(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms723101(v=vs.85).aspx
http://www.magnitude.com/

DSIStatement, each have an associated IWarningListener. Your custom
implementation of these classes can access an IWarningListener through the
parent GetWarningListener()method.

For the complete list of warnings that can be posted to an IWarningListener, see
the file DataAccessComponents\Include\Support\DiagState.h in your
Simba SDK installation directory.

Similar to ErrorException, IWarningListener uses the error messages files
associated with the DSIMessageSource to retrieve the warning messages
corresponding to the error or warning code. For more information on this functionality,
see Including Error Message Files.

Subscribing to an IWarningListener

The SDK controls most of the classes that warning listeners can be registered with.
This means you don't have to explicitly register them in your custom connector code.
The one exception is the ConnectionSetting object - you must register the warning
listener with this class after construction. See the example in Handling Connections.

Posting Warnings to an IWarningListener

Use GetWarningListener()->PostWarning() to post a warning to the warning
listener.

Example: ConnectionSetting object Posting Warnings to an IWarningListener
// In CustomerDSIIEnvironment, CustomerDSIIConnection and
// CustomerDSIIStatement, use the parent GetWarningListener()
// function to retrieve the IWarningListener
this->GetWarningListener()->PostWarning(

Diagnostics::OPT_VAL_CHANGED,

ComponentKey,

L”WarningMessageKey”);

Related Topics

Posting Warning Messages

Including Error Message Files

Localizing Messages

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
111

Errors, Exceptions, and Warnings

http://www.magnitude.com/

Including Error Message Files

This section describes the error message files used by the SDK for ODBC and JDBC
connectors.

Error Messages in ODBC

The ODBC error messages are defined in .xml files. The table below describes each
file, and explains which error message files must be included when you distribute your
connector.

Error Message File Name Description Do I Need to Ship this
File?

ODBCMessages.xml

Contains the error
messages for the
ODBC, DSI, and
Support components.

Yes, always with your
connector.

If you distribute
SimbaClient for
ODBC, you will also
need to include this
file.

SQLEngineMessages.xml

Contains the error
messages for the
Simba SDK
components.

Only if your connector
uses Simba SDK.

ClientMessages.xml

Contains the error
messages for
SimbaClient for
ODBC.

Only if you are
distributing
SimbaClient for
ODBC.

CSCommonMessages.xml

Contains the error
messages for the
Client/Server protocol
components.

Only if you have built
your connector as a
server.

If you distribute
SimbaClient for
ODBC, you will also
need to include this
file.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
112

Errors, Exceptions, and Warnings

http://www.magnitude.com/

Error Message File Name Description Do I Need to Ship this
File?

ServerMessages.xml
Contains the error
messages for
SimbaServer.

Only if you have built
your connector as a
server.

CLIDSIMessages.xml
Contains the error
messages for the
CLIDSI component.

Only if your connector
uses the CLIDSI
component.

JNIDSIMessages.xml
Contains the error
messages for the
JNIDSI component.

Only if your connector
uses the JNIDSI
component.

Organizing your ODBC Error Message Files

By default the SDK uses the English – United States (en-US) locale. You can add
support for additional locales by organizing your additional language files in one of the
following ways:

Subdirectory organization

You can store each locale’s message files in a subdirectory, where the subdirectory is
named using the locale code.

Example: Subdirectory organization of message files
...\ErrorMessages\en-US\ODBCMessages.xml
...\ErrorMessages\fr-CA\ODBCMessages.xml
...\ErrorMessages\ja-JA\ODBCMessages.xml

Single directory organization

You can store all message files for every locale in a single folder. The name of each
locale is added as a suffix in the file names.

Example: Single directory organization of message files
...\ErrorMessages\ODBCMessages_en-US.xml
...\ErrorMessages\fr-CA\ODBCMessages_fr-CA.xml
...\ErrorMessages\ja-JA\ODBCMessages_ja.xml

Error Messages in JDBC

The JDBC error messages are divided into several files. The table below describes
each file, and explains which error message files must be included when you distribute

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
113

Errors, Exceptions, and Warnings

http://www.magnitude.com/

your connector.

Error Message File Name Description Do I Need to
Ship this File?

JDBCMessages.properties

Contains the
error messages
for the JDBC
component.

Yes, always
with your
connector.

If you
distribute

SimbaClient
for JDBC, you
will also need
to include this

file.

DSIMessages.properties

Contains the
error messages
for the DSI and

Support
components.

Yes, always
with your
connector.

If you
distribute

SimbaClient
for JDBC, you
will also need
to include this

file.

CSMessages.properties

CommunicationsMessages.properties

Messages.properties

Contains the
error messages
for SimbaClient
for JDBC and

the
Client/Server
protocol

components.

Only if you are
distributing
SimbaClient
for JDBC.

Organizing your JDBC Error Message Files

By default, the SDK uses the English – United States (en-US) locale. You can add
support for additional locales using Java Resource Bundles.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
114

Errors, Exceptions, and Warnings

http://www.magnitude.com/

The common convention for localization with resource bundles is to organize the error
message files in a hierarchy. This ensures that messages from a parent message file
will be used, even if a locale is not supported.

For example, the structure for message files could be organized in the following
hierarchy. In this example, is the base file name is messages:

Note:

Each message file must be registered separately with DSIMessageSource .

Related Topics

Handling Errors and Exceptions

Posting Warning Messages

Localizing Messages

Localizing Messages

Simba SDK includes sample string resources for the warning and error messages that
it may generate. These strings are provide in English, as well as other languages
including German, French, Spanish, and Japanese. These files are intended as a
starting point to aid you in the localization process. You can modify the localized
strings that are provided, provide your own connector-specific messages, and add
support for additional languages.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
115

Errors, Exceptions, and Warnings

http://www.magnitude.com/

Note:

The files provided for languages other than English are not complete. Some of
these strings are still in English and require further translation.

Customers can configure the locale, or language, of the messages that the connector
uses. Configuration can be done connector-wide so that all connections use the same
locale for their messages, or per-connection so each connection uses a different
locale.

Configuring the Connector Locale

Customers can configure the locale of connector for all connections (connector-wide
locale) or for individual connections. If the locale is not configured, the default locale of
US English (en-US) is used for all messages.

Configuring the Connector-Wide Locale

A single locale is specified for the connector, and all connections use the same
language for any messages.

To configure the connector-wide locale on Windows:

1. In the Windows registry, navigate to the following registry key:
l For 32-bit connectors on 32-bit machines or 64-bit connectors on 64-bit
machines, navigate to HKEY_LOCAL_
MACHINE\SOFTWARE\<Company>\<ConnectorName>\Driver, where
<Company> is your company name and <ConnectorName> is the name of
your connector.
For example, for the Simba Quickstart connector, navigate to HKEY_
LOCAL_MACHINE\SOFTWARE\Simba\Quickstart\Driver.

l Or, for 32-bit connectors on 64-bit machines, navigate to HKEY_LOCAL_
MACHINE\SOFTWARE\Wow6432Node\
<Company>\<ConnectorName>\Driver, where <Company> is your
company name and <ConnectorName> is the name of your connector.
For example, for the Simba Quickstart connector, navigate to HKEY_
LOCAL_
MACHINE\SOFTWARE/Wow6432Node\Simba\Quickstart\Driver.

2. In the <Customer>/<ConnectorName>/Driver section of the registry, add or
modify the DriverLocale key to contain the desired locale code. For a list of
locale codes, see Locale Codes.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
116

Errors, Exceptions, and Warnings

http://www.magnitude.com/

To configure the connector-wide locale on Unix, Linux, and macOS:

1. Locate the .ini configuration file for the desired connector.
2. Modify the DriverLocale string to contain the desired locale code. For a list of

locale codes, see Locale Codes.

Configuring Per-Connection Locale

A locale is configured for each connection, so each connection can use a different
language for error messages. If the locale is not configured for a connection, then the
connector-wide locale is used.

To configure the connection-wide locale on Windows:

1. In the Windows registry, navigate to the to the registry key for the DSN that is
used for the connection:

l For 32-bit connectors on 32-bit machines or 64-bit connectors on 64-bit
machines, navigate to HKEY_LOCAL_
MACHINE\SOFTWARE\ODBC\ODBC.INI\<Company>DSII, where
<Company> is your company name.
For example, for the Simba Quickstart connector, navigate to HKEY_
LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\QuickstartDSII.

l Or, for 32-bit connectors on 64-bit machines, navigate to HKEY_LOCAL_
MACHINE\SOFTWARE\Wow6432\ODBC\ODBC.INI\<Company>DSII,
where <Company> is your company name.
For example, for the Simba Quickstart connector, navigate to HKEY_
LOCAL_
MACHINE\SOFTWARE\Wow6432\ODBC\ODBC.INI\QuickstartDSII.

2. Modify the Locale key to contain the desired locale code. For a list of locale
codes, see Locale Codes.

To configure the connector-wide locale on Unix, Linux, and macOS:

1. Locate the .ini configuration file for the desired connector.
2. Modify the Locale string to contain the desired locale code. For a list of locale

codes, see Locale Codes.

Locale Codes

Locales are specified using a two-letter language code in lower case and an optional
two letter country code in upper case. If a country code is specified, it must be
separated from the language code by a hyphen (-).

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
117

Errors, Exceptions, and Warnings

http://www.magnitude.com/

Examples:

l en-US (English – United States)
l fr-CA (French – Canada)
l it-IT (Italian – Italy)
l de-DE (German – Germany)
l es-ES (Spanish – Spain (Traditional))
l ja (Japanese)

The language code can be any language in the ISO 639-1 standard:
http://www.loc.gov/standards/iso639-2/php/code_list.php. The country code can be
any country in the ISO 3166-1 Alpha-2 standard: http://www.iso.org/iso/country_
codes/iso-3166-1_decoding_table.htm.

Localizing Your Connector

The Simba SDK provides English strings for the error and warning messages that its
components generate. These messages are contained XML files for ODBC and in a
Java Resource Bundle for JDBC. When developing your own connector, you can
create additional messages in English for any errors and warnings that are specific to
your connector. To provide your connector-specific messages, create connector-
specific XML files or Java a Resource Bundle containing your messages in the same
format as the exiting Simba SDK message files. For information about error messages
files, see Including Error Message Files.

DSIMessageSource automatically handles the loading and exposure of these
messages to your connector. Your connector has to call
DSIMessageSource::RegisterMessages, passing in the root name of the
connector specific message file. The root name is the file name without an extension
or locale code. For example, the root name for the QuickStart connector is
QSMessages. A good place to call this method is in the constructor of the connector
class that inherits from DSIDriver.

The connector can also implement its own message source by inheriting from
DSIMessageSource and handling connector-specific messages, which may be in
different format and location than those from the Simba SDK. For example, the
messages may be stored in a database. The handling of SDK messages in this case
can still be delegated to DSIMessageSource. Alternatively, IMessageSource can
be implemented directly, but the implementation must handle both the connector
specific messages and the Simba SDK messages. For more information on
implementing error messages, see Using or Building a Message Source in Handling
Errors and Exceptions.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
118

Errors, Exceptions, and Warnings

http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.iso.org/iso/country_codes/iso-3166-1_decoding_table.htm
http://www.iso.org/iso/country_codes/iso-3166-1_decoding_table.htm
http://www.magnitude.com/

To support a locale for which the Simba SDK provides a translation when using the
default DSIMessageSource class, translate the messages in your connector-specific
message file and follow the naming convention described in the following subsections.
To support a locale for which the SDK does not provide a translation, translate both the
connector-specific and Simba SDK message files.

Additional Language Support

In addition to the languages that are shipped with the Simba SDK, translated
messages strings for other languages are also available. For more information on
obtaining these strings, contact Simba Technologies Inc.

Related Topics

Localizing Messages

Posting Warning Messages

Including Error Message Files

Localizing Messages

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
119

Errors, Exceptions, and Warnings

http://www.magnitude.com/

Multithreading

The Simba SDK typically handles all processing in a single thread, using the same
thread as the application uses to make the ODBC or JDBC request. However, multiple
threads may be started in the following cases:

l If the application creates a new thread for each ODBC or JDBC connection, each
request is processed on its own thread. Processing is handled concurrently.

l In a client/server deployment, multiple clients can send a request to the same
Simba Server. SimbaServer handles each request on its own thread.

In addition, the Simba SDK provides support for multithreading that you can use in
your custom ODBC or JDBC connector.

Using the Thread Class (C++ only)

The Thread class provides the implementation for a thread. There are different
options for using this class in your custom connector:

l You can subclass the Thread class and implement the DoExecute() interface.
l Or, you can call StartDetachedThread(), passing in a pointer to a function
that will be executed when the thread is started.

Note:

There is no overall difference in functionality between these methods.

Using the ThreadPool Class

The ThreadPool class starts and manages the running threads. It implements the
pool of threads, and is responsible for creating new threads and assigning tasks to
them.

To implement a multi-threaded environment using the ThreadPool class:

1. To make a runnable task, subclass ITask and implement the Run()method.
2. Call the PostTask()method to add runnable tasks to a queue of unprocessed

tasks on the ThreadPool class.

Note:

The maximum number of threads is specified by m_maxThreads.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
120

Multithreading

http://www.magnitude.com/

Asynchronous ODBC Support

The Simba SDK enables your custom ODBC connector to support asynchronous
ODBC. ODBC 3.8 supports asynchronous execution of ODBC connection functions,
while ODBC 3.52 only supports asynchronous execution of statement functions. For
more information about asynchronous ODBC support, see
http://msdn.microsoft.com/en-us/library/ms713563%28v=vs.85%29.aspx

Simba SDK 9.3 and later releases supports the polling method for this asynchronous
functionality. However, this support varies by platform as listed below.

Note:

Executing functions asynchronously using the polling method involves calling
the same function is repeatedly until the function no longer returns SQL_
STILL_EXECUTING. When repeatedly calling the function in such a loop, it’s
recommended that the same parameters be passed each time and that their
values remain unchanged. This will prevent any unexpected errors from
occurring.

Windows 7 +

l SQLBROWSECONNECT
l SQLCOLATTRIBUTE
l SQLCOLUMNPRIVILEGES
l SQLCOLUMNS
l SQLCONNECT
l SQLDESCRIBECOL
l SQLDESCRIBEPARAM
l SQLDISCONNECT
l SQLDRIVERCONNECT
l SQLENDTRAN
l SQLEXECDIRECT
l SQLEXECUTE
l SQLFETCHSCROLL
l SQLFETCH
l SQLFOREIGNKEYS
l SQLGETDATA
l SQLGETTYPEINFO

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
121

Multithreading

http://msdn.microsoft.com/en-us/library/ms713563(v=vs.85).aspx
http://www.magnitude.com/

l SQLMORERESULTS
l SQLNUMPARAMS
l SQLNUMRESULTCOLS
l SQLPARAMDATA
l SQLPREPARE
l SQLPRIMARYKEYS
l SQLPROCEDURECOLUMNS
l SQLPROCEDURES
l SQLPUTDATA
l SQLSETPOS
l SQLSPECIALCOLUMNS
l SQLSTATISTICS
l SQLTABLEPRIVILEGES
l SQLTABLES

Non-Windows including iODBC, UnixODBC, SimbaDM

l SQLCOLUMNPRIVILEGES
l SQLCOLUMNS
l SQLEXECDIRECT
l SQLEXECUTE
l SQLFETCHSCROLL
l SQLFETCH
l SQLFOREIGNKEYS
l SQLGETTYPEINFO
l SQLPRIMARYKEYS
l SQLPROCEDURECOLUMNS
l SQLPROCEDURES
l SQLSPECIALCOLUMNS
l SQLSTATISTICS
l SQLTABLEPRIVILEGES
l SQLTABLES

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
122

Multithreading

http://www.magnitude.com/

Note:

l Asynchronous functionality at the connection level is not supported on
non-Windows platforms.

Critical Section Locks

A critical section is a section of code that accesses a shared resource, where this
resource must not be accessed at the same time as another thread. For example, only
one thread at a time should write to a log file. If multiple threads write to a log file at the
same time, the resulting text in the file could be an unpredictable mix up of text from
each thread.

It is important to implement critical section locks when using either the Java or the C++
SDKs. If you are using the Java SDK, you can use standard Java classes to handle
locking. If you are using the C++ SDK, you can use the classes provided by the Simba
SDK.

Critical Section Locks in the C++ SDK

A critical sections of code should be specific using a CriticalSection object. A
CriticalSectionLock object can then be used to lock this critical section to
prevent concurrent access by another thread.

Tip:

Your implementation of GetDriverLog, for example
CustomerDSIIDriver::GetDriverLog, should use a
CriticalSectionLock.

To use critical sections and critical section locks:

1. Include the following files:
#include “CriticalSection.h”
#include “CriticalSectionLock.h”

2. Define a CriticalSectionmember variable. For example:

Simba::Support::CriticalSection m_criticalSection;

3. For functions that use shared resources, use a CriticalSectionLock to lock
the critical section. Add the following line of code to the start of the function:

CriticalSectionLock lock(&m_criticalSection);

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
123

Multithreading

http://www.magnitude.com/

The lock will be released once the function returns.

For more information on the CriticalSection and CriticalSectionLock
classes, see the Simba SDK C++ API Reference.

Concurrency Support

Some ODBC functions can be run concurrently on statements that share the same
connection, while other functions block.

For example, the ODBC catalog function SQLTables cannot be run concurrently.
Suppose a thread is executing SQLTables on a statement, while another thread
attempts to execute a function on another statement that shares the same connection.
The second thread blocks until SQLTables on the first thread is finished.

This section explains the concurrency behaviour for the different ODBC functions, and
explains how to change the behaviour from concurrent to blocking.

ODBC Functions that Support Concurrency

By default, the following ODBC functions support concurrency:

l SQLPrepare

l SQLCloseCursor

l SQLFreeStmt

l SQLMoreResults

l SQLAllocHandle

l SQLFreeHandle

These functions can be executed concurrently, even if the statements that are
executing them share the same connection. For example, suppose a statement is
executing a function on a connection. If you pass that connection handle to
SQLAllocHandle(), the SQLAllocHandle() function is executed concurrently
and does not block.

Similarly, suppose two statements, Statement1 and Statement2, are using the
same connection. Statement1 is already executing. You can call SQLFreeHandle
() on Statement2 and it will not block.

Overriding the Default Behaviour

If you want these functions to block by default, you can change the default behaviour
by setting a connector property.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
124

Multithreading

http://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference/
http://www.magnitude.com/

To set ODBC functions to block:

In your IDriver implementation, set the DSI_DRIVER_ALLOW_INCREASED_
ODBC_STATEMENT_CONCURRENCY property to false:

SetProperty(DSI_DRIVER_ALLOW_INCREASED_ODBC_STATEMENT_
CONCURRENCY, AttributeData::MakeNewUInt32AttributeData
(DSI_AIOSC_FALSE));

ODBC Functions that Do Not Support Concurrency

The following ODBC functions do not support concurrency:

l SQLExecute
l SQLExecDirect
l All catalog functions.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
125

Multithreading

http://www.magnitude.com/

API Overview

This section introduces the functionality and workflows of the C++ DSI API and the DSI
API Extensions, which are the main APIs that you use to build a custom connector.
The Java APIs are similar.

DSI API

The DSI API exposes the classes needed to build your own Data Store Interface
Implementation using C++. The C# and Java versions of these classes, the DotNet
DSI API and the Java DSI API, provide similar functionality as the C++ classes.

The DSI API functionality is grouped into Core classes and Data Engine classes.

Core classes

The Core classes provide all of the essential functionality to establish and manage the
connection to your data source:

Class Description

IDriver

IDriver is a singleton instance constructed when the
connector is first loaded. Its primary responsibility is to
construct IEnvironment objects and manage any
connector-wide properties. An abstract base class
DSIDriver is provided to assist in some of these
responsibilities, including initializing defaults and
managing properties.

IEnvironment

IEnvironment objects correspond to the ODBC
environment (ENV) handles allocated by
SQLAllocHandle. Their primary responsibility is to
construct IConnection objects and manage any
environment properties. An abstract base class
DSIEnvironment is provided.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
126

API Overview

http://www.magnitude.com/

Class Description

IConnection

IConnection objects correspond to the ODBC
connection (DBC) handles allocated by
SQLAllocHandle. Their primary responsibility is to
handle user authentication, construct
IStatementobjects, and manage any connection
properties. An abstract base class DSIConnection is
provided.

IStatement

IStatement objects correspond to the ODBC statement
(STMT) handles allocated by SQLAllocHandle. Their
primary responsibility is to construct IDataEngine
objects and manage any statement properties. An abstract
base class DSIStatement is provided.

IMessageSource

IMessageSource is responsible for loading error
messages and warnings from your connector. An abstract
implementation DSIMessageSource is provided to load
messages generated by the SDK. For more information,
see "Using or building a message source" in Handling
Errors and Exceptions.

ILogger

ILogger is responsible for storing or printing log
messages from your connector. Each of the IDriver,
IEnvironment, IConnection, and IStatement
classes has a GetLog()method which must return the
most appropriate logger for that object. You may share
loggers between all the objects or construct a different
logger for each. The DSIFileLogger class is fully
implemented to store the log messages to a text file, but
you may change the behaviour in any way by extending
the ILogger interface directly or by subclassing the
partially implemented DSILoggerclass.

Data Engine classes

The Data Engine classes are the subset used to perform the data access functions
against your data store:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
127

API Overview

http://www.magnitude.com/

Class Description

IDataEngine

IDataEngine is responsible for constructing an
IQueryExecutor when preparing queries or
constructing an IResult for catalog function metadata.
An abstract base class DSIDataEngine is provided to
assist in implementing filters for the catalog function
metadata.

IQueryExecutor IQueryExecutor is responsible for executing a query
and generating IResults objects.

IResults

An IResults object represents a collection of one or
more IResult objects. DSIResults provides a basic
implementation for accessing and managing a collection
of IResult objects.

IResult

IResult is responsible for retrieving column data and
maintaining a cursor across result rows. At a minimum, the
cursor should support movement in a forward-only
direction. Abstract base classes
DSISimpleResultSetand
DSISimpleRowCountResult are provided to deal with
some basic functionality.

DSI API Extensions

These API Extensions provide access to the SQL Engine through abstract or concrete
implementation of the above data engine classes. The C# and Java versions of these
classes, the DotNet DSI API Extensions and the Java DSI API Extensions, provide all
the same functionality as the C++ classes.

Class Description

DSIExtSqlDataEngine

DSIExtSqlDataEngine is an abstract
class, which derives from
DSIDataEngine. It is responsible for
parsing and optimizing prepared SQL
as well as opening tables from your data
store.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
128

API Overview

http://www.magnitude.com/

Class Description

SqlDataEngine

SqlDataEngine represents the Java
Simba SQLEngine for use with JDBC
connectors in the Java environment. It
derives from DSIDataEngine and
performs the same tasks as
DSIExtSqlDataEngine.

DSIExtQueryExecutor

DSIExtQueryExecutor is
constructed by
theDSIExtSqlDataEngineand is
responsible for executing the query.

SqlQueryExecutor

SqlQueryExecutor is the Java
equivalent of DSIExtQueryExecutor
for use with the Java Simba
SQLEngine.

DSIExtResultSet

DSIExtResultSet and the
DSIExtSimpleResultSet are
abstract classes derived from IResult.
They require several new virtual
functions, not required by IResult, to
be implemented so that the result may
be used in the SQL Engine. Tables
opened by DSIExtSqlDataEngine
must be instances of
DSIExtResultSet.

DSIExtJResultSet

DSIExtJResultSet is the Java
equivalent of The DSIExtResultSet
for use with the Java Simba
SQLEngine.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
129

API Overview

http://www.magnitude.com/

Class Description

DSIExtMetadataHelper

DSIExtMetadataHelper is an
optional abstract class that may be
constructed by the
DSIExtSqlDataEngine. It is
responsible for iterating through tables
and stored procedures so the engine
can generate catalog function
metadata.

IMetaDataHelper

IMetadataHelper interface is the
base definition for metadataelpers.
Since there is no default implementation
in Java (e.g. no
DSIExtMetadataHelper), a
Java-based DSII must implement
IMetadataHelper.

DSIExtOperationHandlerFactory

DSIExtOperationHandlerFactory
is an optional abstract class that may be
constructed by the
DSIExtSqlDataEngine. It is
responsible for constructing pass-down
operation handlers that can optimize
queries by allowing certain operations to
be performed by your data store.

Related Topics

Simba SDK C++ API Reference

Simba SDK Java API Reference

Building Blocks for a DSI Implementation

Lifecycle of DSI Objects

API Overview

This section introduces the functionality and workflows of the C++ DSI API and the DSI
API Extensions, which are the main APIs that you use to build a custom connector.
The Java APIs are similar.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
130

API Overview

https://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference
https://www.simba.com/docs/SDK/SimbaEngine_Java_API_Reference
http://www.magnitude.com/

DSI API

The DSI API exposes the classes needed to build your own Data Store Interface
Implementation using C++. The C# and Java versions of these classes, the DotNet
DSI API and the Java DSI API, provide similar functionality as the C++ classes.

The DSI API functionality is grouped into Core classes and Data Engine classes.

Core classes

The Core classes provide all of the essential functionality to establish and manage the
connection to your data source:

Class Description

IDriver

IDriver is a singleton instance constructed when the
connector is first loaded. Its primary responsibility is to
construct IEnvironment objects and manage any
connector-wide properties. An abstract base class
DSIDriver is provided to assist in some of these
responsibilities, including initializing defaults and
managing properties.

IEnvironment

IEnvironment objects correspond to the ODBC
environment (ENV) handles allocated by
SQLAllocHandle. Their primary responsibility is to
construct IConnection objects and manage any
environment properties. An abstract base class
DSIEnvironment is provided.

IConnection

IConnection objects correspond to the ODBC
connection (DBC) handles allocated by
SQLAllocHandle. Their primary responsibility is to
handle user authentication, construct
IStatementobjects, and manage any connection
properties. An abstract base class DSIConnection is
provided.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
131

API Overview

http://www.magnitude.com/

Class Description

IStatement

IStatement objects correspond to the ODBC statement
(STMT) handles allocated by SQLAllocHandle. Their
primary responsibility is to construct IDataEngine
objects and manage any statement properties. An abstract
base class DSIStatement is provided.

IMessageSource

IMessageSource is responsible for loading error
messages and warnings from your connector. An abstract
implementation DSIMessageSource is provided to load
messages generated by the SDK. For more information,
see "Using or building a message source" in Handling
Errors and Exceptions.

ILogger

ILogger is responsible for storing or printing log
messages from your connector. Each of the IDriver,
IEnvironment, IConnection, and IStatement
classes has a GetLog()method which must return the
most appropriate logger for that object. You may share
loggers between all the objects or construct a different
logger for each. The DSIFileLogger class is fully
implemented to store the log messages to a text file, but
you may change the behaviour in any way by extending
the ILogger interface directly or by subclassing the
partially implemented DSILoggerclass.

Data Engine classes

The Data Engine classes are the subset used to perform the data access functions
against your data store:

Class Description

IDataEngine

IDataEngine is responsible for constructing an
IQueryExecutor when preparing queries or
constructing an IResult for catalog function metadata.
An abstract base class DSIDataEngine is provided to
assist in implementing filters for the catalog function
metadata.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
132

API Overview

http://www.magnitude.com/

Class Description

IQueryExecutor IQueryExecutor is responsible for executing a query
and generating IResults objects.

IResults

An IResults object represents a collection of one or
more IResult objects. DSIResults provides a basic
implementation for accessing and managing a collection
of IResult objects.

IResult

IResult is responsible for retrieving column data and
maintaining a cursor across result rows. At a minimum, the
cursor should support movement in a forward-only
direction. Abstract base classes
DSISimpleResultSetand
DSISimpleRowCountResult are provided to deal with
some basic functionality.

DSI API Extensions

These API Extensions provide access to the SQL Engine through abstract or concrete
implementation of the above data engine classes. The C# and Java versions of these
classes, the DotNet DSI API Extensions and the Java DSI API Extensions, provide all
the same functionality as the C++ classes.

Class Description

DSIExtSqlDataEngine

DSIExtSqlDataEngine is an abstract
class, which derives from
DSIDataEngine. It is responsible for
parsing and optimizing prepared SQL
as well as opening tables from your data
store.

SqlDataEngine

SqlDataEngine represents the Java
Simba SQLEngine for use with JDBC
connectors in the Java environment. It
derives from DSIDataEngine and
performs the same tasks as
DSIExtSqlDataEngine.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
133

API Overview

http://www.magnitude.com/

Class Description

DSIExtQueryExecutor

DSIExtQueryExecutor is
constructed by
theDSIExtSqlDataEngineand is
responsible for executing the query.

SqlQueryExecutor

SqlQueryExecutor is the Java
equivalent of DSIExtQueryExecutor
for use with the Java Simba
SQLEngine.

DSIExtResultSet

DSIExtResultSet and the
DSIExtSimpleResultSet are
abstract classes derived from IResult.
They require several new virtual
functions, not required by IResult, to
be implemented so that the result may
be used in the SQL Engine. Tables
opened by DSIExtSqlDataEngine
must be instances of
DSIExtResultSet.

DSIExtJResultSet

DSIExtJResultSet is the Java
equivalent of The DSIExtResultSet
for use with the Java Simba
SQLEngine.

DSIExtMetadataHelper

DSIExtMetadataHelper is an
optional abstract class that may be
constructed by the
DSIExtSqlDataEngine. It is
responsible for iterating through tables
and stored procedures so the engine
can generate catalog function
metadata.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
134

API Overview

http://www.magnitude.com/

Class Description

IMetaDataHelper

IMetadataHelper interface is the
base definition for metadataelpers.
Since there is no default implementation
in Java (e.g. no
DSIExtMetadataHelper), a
Java-based DSII must implement
IMetadataHelper.

DSIExtOperationHandlerFactory

DSIExtOperationHandlerFactory
is an optional abstract class that may be
constructed by the
DSIExtSqlDataEngine. It is
responsible for constructing pass-down
operation handlers that can optimize
queries by allowing certain operations to
be performed by your data store.

Related Topics

Simba SDK C++ API Reference

Simba SDK Java API Reference

Building Blocks for a DSI Implementation

Lifecycle of DSI Objects

Lifecycle of DSI Objects

The objects of the DSI API have a lifecycle that is modeled on, though not exactly the
same as, the lifecycle of ODBC handles. This section explains the lifecycle in the C++
SDK for ODBC connectors.

The IDriver object is instantiated when the connector is loaded, and a single
instance is alive until the connector is unloaded.

The IDriver object creates an IEnvironment when an application allocates
environment handles. IDriver can create multiple IEnvironment objects. These
are guaranteed to have been destroyed by the time the IDriver is destroyed.

IEnvironment create IConnections, which are guaranteed to have been
destroyed by the time the parent IEnvironment has been destroyed.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
135

API Overview

https://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference
https://www.simba.com/docs/SDK/SimbaEngine_Java_API_Reference
http://www.magnitude.com/

IConnections can be created and freed when an application chooses, but are
typically long-lived objects, with multiple actions occurring before being destroyed.

IConnections create IStatements, which are guaranteed to have been destroyed
by the time the parent IConnection has been destroyed. IStatements can be
short- or long-lived objects depending on the application. If the application re-uses
statements, then they tend to be long-lived, while if the application does not re-use
statements they tend to be short-lived.

IStatements create IDataEngines, which are guaranteed to have been destroyed
by the time the parent IStatement has been destroyed.

IDataEngines create IQueryExecutors, which are guaranteed to have been
destroyed by the time the parent IDataEngine has been destroyed.
IQueryExecutors have a lifespan that matches the lifespan of a prepared and
executed, or directly executed, query. A single IQueryExecutor is used for multiple
executions of a prepared query.

Note:

If you are using the Simba SQLEngine, the IQueryExecutor is already
implemented by the SQLEngine.

Any objects created by an IQueryExecutor are guaranteed to have been destroyed
by the time the parent IQueryExecutor has been destroyed.

IQueryExecutors create IResults, which are destroyed by the
IQueryExecutors that created them. As stated above, IResults are guaranteed
to have been destroyed before the IQueryExecutor.

IResult objects are accessed through IResults objects. However, the timing of
their creation and destruction is determined by a connector’s implementation. The
DSIResults implementation creates IResult objects during construction and
destroys them during destruction. Note that an IResult object is not accessible after
it has been destroyed by the parent IResultsobject.

Related Topics

API Overview

Working With the Java API

This section describes the features in the Simba SDK that are specific to the Java API.
JDBC Time and Timestamp with Timezone

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
136

API Overview

http://www.magnitude.com/

JDBC exposes the time and timestamp types with timezone information, represented
as a Calendar object. If your data store supports timezone information for these
types, it can be accessed by the TimeTz and TimestampTz types, both for insertion
and retrieval.

To supply timezone information when retrieving data, instead of using the normal
java.sql.Time or java.sql.Timestamp types, use the supplied
com.simba.dataengine.utilities.TimeTz or
com.simba.dataengine.utilities.TimestampTz types. These types are
essentially a pair of the datetime class, along with a Calendar that supplies the
timezone information. The SDK will automatically perform the correct operations to
interpret that data when it passes it to applications.

To use timezone information when inserting data, use the getTimeTz() and
getTimestampTz()methods of the DataWrapper class to get the classes which
hold both the datetime types and the Calendar holding the timezone information. If
your data store does not support timezones for the datetime types, calling the normal
getTime() and getTimestamp()methods will automatically convert the datetime
types to the local timezone.

JDBC Updatable ResultSets

JDBC provides the functionality to modify result sets that are generated from
statements. SimbaJDBC allows you to add this functionality to your JDBC connector, if
your data source supports it, by making the following changes to your CustomerDSII:

1. Set the DSI_SUPPORTS_UPDATABLE_RESULT_SETS property in your
CustomerDSIIConnection object to a combination of DSI_SUPPORTS_
URS_INSERT, DSI_SUPPORTS_URS_DELETE, and DSI_SUPPORTS_URS_
UPDATE, depending on the extent of the modifications you will support on your
result set.

2. Override and implement the following virtual methods:
a. appendRow() – Add a new empty row to the end of the result set.
b. deleteRow() – Delete the row at the current cursor position.
c. writeData() – Write data to the specified cell in the current row.

3. The following virtual methods from IResultSet should also be overridden and
implemented. However, you may choose to return false if this information is
not available:
a. rowDeleted() – Determine if the current row has been deleted.
b. rowInserted() – Determine if the current row has been inserted.
c. rowUpdated() – Determine if the current row has been updated.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
137

API Overview

http://www.magnitude.com/

4. The following virtual methods from IResultSetmay also optionally be
overridden and implemented:
a. onStartRowUpdate() – Called before writing data to update a row. This

is not called after appendRow because it is implied that data will be written.
b. onFinishRowUpdate() – Called after writing all updated or inserted data

in a row.

Developing for different Versions of JDBC

Simba SDK includes implementations for building connectors that work with JDBC 4.0,
4.1, and 4.2. You can develop connectors for any of these versions of JDBC, or you
can develop a ‘hybrid’ connector that works with multiple versions, instantiating the
appropriate classes at runtime.

Interface Versions

This section lists the classes that have different versions in order to support the
different versions of JDBC:

AbstractDataSource

l Use JDBC4AbstractDataSource for JDBC 4.0
l Use JDBC41AbstractDataSource for JDBC 4.1
l Use JDBC42AbstractDataSource for JDBC 4.2
l Use HybridAbstractDataSource for hybrid versions

AbstractDriver

l Use JDBC4AbstractDriver for JDBC 4.0
l Use JDBC41AbstractDriver for JDBC 4.1
l Use JDBC42AbstractDriver for JDBC 4.2
l Use HybridAbstractDriver for hybrid versions

ObjectFactory

l Use JDBC4ObjectFactory for JDBC 4.0
l Use JDBC41ObjectFactory for JDBC 4.1
l Use JDBC42ObjectFactory for JDBC 4.2
l Use HybridJDBCObjectFactory for hybrid versions

If you are upgrading the code for an existing connector developed using Simba SDK
9.1 or earlier, then you must rename and modify your implementations of
JDBCAbstractDataSource, JDBCAbstractDriver, and JDBCObjectFactory

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
138

API Overview

http://www.magnitude.com/

to implement the appropriate classes listed in the table above. If you are upgrading
from Simba SDK 9.4, you may need to remove support for JDBC 3.0 if your
implementation has support for it. If you are creating a new connector, then determine
the appropriate classes to implement from the table above.

Internally, the Simba SDK includes JDBC version-specific implementations for the
various JDBC classes such as SConnection, SDatabaseMetadata, etc. Examples
of these include S3Connection, S4Connection, etc. Each version of the
AbstractFactory will therefore return the appropriate subclasses for its target
JDBC version (e.g. JDBC4ObjectFactory’s creationConnection()method
will return an S4Connection object. In the case of a hybrid connector, its factory will
determine which classes to create at runtime as described in the next section.

Determing and Recording the JDBC Version at Runtime

When developing a hybrid connector, the connector must determine which version of
JDBC is running, and pass this information to the Simba SDK via the
HybridAbstractDataSource and HybridAbstractDriver classes.

While there are a number of techniques for determining the JDBC version at runtime,
JavaUltralight checks the value of the ‘MODE’ parameter in the connection string. For
information on the Java Ultralight sample connector, see JavaUltralight Sample
Connector. The following example shows a connection string that includes this MODE
parameter:
jdbc:simba://User=odbc_user;Password=odbc_user_
password;MODE=JDBC4

If the MODE parameter does not exist, JavaUltraLight detects its absence and then
assumes that JDBC 4.0 should be used.

JavaUltralight provides an example of determining the version using the connection
string. Its HybridUtilities class contains a static method that looks for this
parameter and, if found, returns the appropriate JDBC version enum:

public final class HybridUtilities
{

public static JDBCVersion runningJDBCVersion(String
modeProperty)

{
if ((null != modeProperty) && (modeProperty.equals

("JDBC42")))
{

return JDBCVersion.JDBC42;
}

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
139

API Overview

http://www.magnitude.com/

else if ((null != modeProperty) &&
(modeProperty.equals("JDBC41")))

{
return JDBCVersion.JDBC41;

}
else
{
return JDBCVersion.JDBC4;
}

}
}

Once the JDBCVersion enum version is determined, it must then be passed to the
Simba SDK by implementing the runningJDBCVersion()methods when
subclassesing HybridAbstractDriver and HybridDataSource.

The following example shows how JavaUltralight’s ULJDBCHybridDriver and
ULJDBCHybridDataSource classes use the static
HybridUtilities::runningJDBCVersion()method, described above, to pass
this information to the Simba SDK:

public class ULJDBCHybridDriver extends HybridAbstractDriver
{

private String m_mode = null;
protected Pair<IConnection, ConnSettingRequestMap>
getConnection(Properties info) throws SQLException
{

Pair<IConnection, ConnSettingRequestMap>
result = super.getConnection(info);
ConnSettingRequestMap connectionProperties =
result.value();
if ((null != connectionProperties) && (null
!= connectionProperties.getProperty
(ULPropertyKey.MODE)))
{

m_mode =
connectionProperties.getProperty(
ULPropertyKey.MODE).getString();
}

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
140

API Overview

http://www.magnitude.com/

return result;

}
protected JDBCVersion runningJDBCVersion()

{

return
HybridUtilities.runningJDBCVersion
(m_mode);

}

}
public class ULJDBCHybridDataSource extends
HybridAbstractDataSource
{

protected JDBCVersion runningJDBCVersion()

{

return HybridUtilities.runningJDBCVersion
(getCustomProperty(ULPropertyKey.MODE));

}

}

Connector Auto-Loading

To allow for the auto-loading of a JDBC 4.0, JDBC 4.1, JDBC 4.2, or hybrid connector,
you must have the file METAINF/services/java.sql.Driver containing the
connector class to load in this .jar.

To create the file using Ant, add the following Service tag to the .jar tag in the
connector’s .xmlbuild file:
<service type="java.sql.Driver"
provider="your.driver.class.name"/>

For example, JavaUltralight’s JavaUltraLightBuilder.xml build file specifies the
following for JDBC 4.0 and hybrid builds respectively:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
141

API Overview

http://www.magnitude.com/

<service
type="java.sql.Driver" provider="com.simba.ultralight.core.jd
bc4.ULJDBC4Driver"/>
<target name="JavaUltraLightBuildDebug4"

.

.
<jar jarfile="${jardest}/${JavaUltraLight4Jar}"

basedir="${dest}" includes="com/simba/**">
<service type="java.sql.Driver"

provider="com.simba.ultralight.core.jdbc4.ULJDBC4Driver"/>
</jar>

</target>
<target name="JavaUltraLightBuildDebugHybrid"

depends="JavaUltraLightCompileDebugHybrid,
UnjarHybrid"

description="generate the Java UltraLight Jar file in
debug mode">

<mkdir dir="${jardest}"/>
.
.
<jar jarfile="${jardest}/${JavaUltraLightHybridJar}"
basedir="${dest}"
includes="com/simba/**">

<service
type="java.sql.Driver" provider="com.simba.ultralight.core.hy
brid.ULJDBC4Driver"/>

</jar>
</target>

To auto-load the connector in your application, simply pass in
jdbc:simba://localhost along with the user name and password as the URL, as
shown in the following code example:

String url = "jdbc:simba://localhost;UID=username;PWD=test;";
m_connection = DriverManager.getConnection(url);

JDBC 4.0, 4.1, and 4.2 Exceptions

Exceptions created by the connector generate a SQLException by default. To
generate an exception specific to JDBC 4.0, 4.1, or 4.2, specify the exception type
when calling createGeneralException() as shown in the following example:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
142

API Overview

http://www.magnitude.com/

ULDriver.s_ULMessages.createGeneralException
(DSIMessageKey.NOT_IMPLEMENTED.name(),
ExceptionType.INTEGRITY_CONSTRAINT_VIOLATION);

Pooled Connections

A pooled connection can be created by calling
JDBCObjectFactory::createPooledConnection(). If any specific behaviour
is required, a connector can optionally override createPooledConnection() to
return a subclass of PooledConnection. The three classes provided by Simba SDK
for the respective JDBC versions each return the appropriate version of
‘SPooledConnection’ by default. For example,
JDBC4ObjectFactory::createPooledConnection() returns an
S4PooledConnection as shown in the following example:

/**
* Attempts to establish a physical database connection

that can be used as a pooled connection.
* @param connection The connection to use to create the
* <code>PooledConnection</code>.
* @return A <code>PooledConnection</code> object that is

a physical connection to the database that this
<code>ConnectionPoolDataSource</code> object represents.

* @throws SQLException If a database access error
occurs.
*/
protected PooledConnection createPooledConnection(SConnection
connection) throws SQLException
{

return new S4PooledConnection(connection);
}

Setting and Initializing Client Information

If a connector uses non-standard client info properties, both the initialization (e.g.
loading) and the setting of these properties must be handled by the connector’s
connection class. These tasks are handled in the loadClientInfoProperties()
andsetClientInfoProperty()methods of the connection as shown in the
following example from JavaUltraLight:

private void loadClientInfoProperties() throws ErrorException
{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
143

API Overview

http://www.magnitude.com/

// TODO #XX: Define your custom client info
properties.
// Standard client info properties are Application_
name, Client_user and
// client_hostname.
// Other client info properties have to be defined
here
ClientInfoData fakeCustomCLientInfo = new
ClientInfoData(
ULClientInfoPropertyKey.UL_CUSTOM_CLIENT_INFO,
25,
"FakeCustomClientInfoForUltralight",
"Just a fake client info property to show how to
define them.");
setClientInfoProperty(fakeCustomCLientInfo);

}
public void setClientInfoProperty(String propName, String
propValue)throws ClientInfoException
{

// Check that the property name is valid and store
the new property
// values.
super.setClientInfoProperty(propName, propValue);
// TODO: Implements the wanted behaviour
// Usually the connector stores the value specified
in a suitable location
// in the database.
// For example in a special register, session
parameter, or system table
// column.
LogUtilities.logInfo(
String.format("Property {0} has now the value {1}",
propName,
propValue), m_log);

}

Handling Deregistration

JDBC 4.2 introduced the new DriverAction interface allowing JDBC connectors to
be notified when they are being deregistered by the JDBC DriverManager.
Implementing this interface allows connectors to handle the notification and perform

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
144

API Overview

http://www.magnitude.com/

clean up tasks such releasing resources. Note that the implementation should not
perform the deregistration, but rather, perform any clean up required while the
connector is being deregistered by the DriverManager.

Simba SDK 10.3 exposes this notification via the IDriver interface and a default
implementation is provided in the DSIDriver class which does nothing. If you need to
handle the deregisration event to perform clean up tasks, implement the deregister
()method in your DSIDriver-derived class.

Related Topics

API Overview

Lifecycle of DSI Objects

Sample Connectors and Projects

JavaUltralight Sample Connector

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
145

API Overview

http://www.magnitude.com/

Data Types

The Simba SDK provides a data type to handle each of the types in the SQL
specification. This section lists the types for each SDK, and includes instructions on
how to convert the types from your data store into the Simba SDK data types.

In the C++ SDK, you can also create your own custom C and SQL data types.

SQL Data Types in the C++ SDK

SqlData objects represent the SQL types and encapsulate the data in a buffer. When
you have a SqlData object and would like to know what data type it is representing,
you can use GetMetadata()->GetSqlType() to retrieve the associated SQL_
[TYPE] type. For more information, see the file SqlData.h.

Fixed Length Types

The structures used to store the fixed-length data types represented by SqlData
objects are listed below:

SQL Type Simba SDK Data Type

SQL_BIT simba_uint8

SQL_BIGINT
(signed) simba_int64

SQL_BIGINT
(unsigned) simba_uint64

SQL_DATE TDWDate

SQL_DECIMAL TDWExactNumericType

SQL_DOUBLE simba_double64

SQL_FLOAT simba_double64

SQL_GUID TDWGuid

SQL_INTEGER
(signed) simba_int32

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
146

Data Types

http://www.magnitude.com/

SQL Type Simba SDK Data Type

SQL_INTEGER
(unsigned) simba_uint32

SQL_
INTERVAL_
DAY

TDWSingleFieldInterval

SQL_
INTERVAL_
DAY_TO_
HOUR

TDWDayHourInterval

SQL_
INTERVAL_
DAY_TO_
MINUTE

TDWDayMinuteInterval

SQL_
INTERVAL_
DAY_TO_
SECOND

TDWDaySecondInterval

SQL_
INTERVAL_
HOUR

TDWSingleFieldInterval

SQL_
INTERVAL_
HOUR_TO_
MINUTE

TDWHourMinuteInterval

SQL_
INTERVAL_
HOUR_TO_
SECOND

TDWHourSecondInterval

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
147

Data Types

http://www.magnitude.com/

SQL Type Simba SDK Data Type

SQL_
INTERVAL_
MINUTE

TDWSingleFieldInterval

SQL_
INTERVAL_
MINUTE_
SECOND

TDWMinuteSecondInterval

SQL_
INTERVAL_
MONTH

TDWSingleFieldInterval

SQL_
INTERVAL_
SECOND

TDWSecondInterval

SQL_
INTERVAL_
YEAR

TDWSingleFieldInterval

SQL_
INTERVAL_
YEAR_TO_
MONTH

TDWYearMonthInterval

SQL_
NUMERIC TDWExactNumericType

SQL_REAL simba_double32

SQL_
SMALLINT
(signed)

simba_int16

SQL_
SMALLINT
(unsigned)

simba_uint16

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
148

Data Types

http://www.magnitude.com/

SQL Type Simba SDK Data Type

SQL_TIME TDWTime

SQL_
TIMESTAMP TDWTimestamp

SQL_TINYINT
(signed) simba_int8

SQL_TINYINT
(unsigned) simba_uint8

SQL_TYPE_
DATE TDWDate

SQL_TYPE_
TIME TDWTime

SQL_TYPE_
TIMESTAMP TDWTimestamp

SQL_TYPE_
DATE TDWDate

SQL_TYPE_
TIME TDWTime

SQL_TYPE_
TIMESTAMP TDWTimestamp

Date, Time and DateTime Types

The associated SQL types for date, time, and datetime are listed below:

Type SQL Type for ODBC 3.x

date SQL_TYPE_DATE

time SQL_TYPE_TIME

datetime SQL_TYPE_TIMESTAMP

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
149

Data Types

http://www.magnitude.com/

Important:

SQL_DATE, SQL_TIME and SQL_TIMESTAMP are ODBC 2.x types, while
SQL_TYPE_DATE, SQL_TYPE_TIME, and SQL_TYPE_TIMESTAMP are
ODBC 3.x types. Since you are developing an ODBC 3.x connector, use the
ODBC 3.x types.

Example: Simple Fixed-Length Data

The SQLData for a SQL_INTEGER contains a simba_int32 type. This example
shows you how to copy your integer value into the simba_int32 type.

switch (in_data->GetMetadata()->GetSqlType())
{

case SQL_INTEGER:
{

simba_int32 value = 1234;
reinterpret_cast<simba_int32>(in_data->GetBuffer())

= value;
}

}

Variable Length Types

The following variable-length data types are stored in buffers and represented by
SqlData objects:

SQL Type Data Type

SQL_BINARY simba_byte*

SQL_CHAR simba_char*

SQL_LONGVARBINARY simba_byte*

SQL_LONGVARCHAR simba_char*

SQL_VARBINARY simba_byte*

SQL_VARCHAR simba_char*

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
150

Data Types

http://www.magnitude.com/

SQL Type Data Type

SQL_WCHAR simba_byte*

SQL_WLONGVARCHAR simba_byte*

SQL_WVARCHAR simba_byte*

Note:

You can use DSITypeUtilities::OutputWVarCharStringData and
OutputVarCharStringData for setting character data.

Example: Variable-Length Data

In the example below, the SQL_CHAR case shows how to use the type utilities, while
the SQL_VARCHAR case shows how to use memcpy.

Note:

l In your custom connector code, SQL_CHAR, SQL_VARCHAR and SQL_
LONGVARCHAR do not require separate cases.

l You custom connector code has other considerations, such as handling
offsets in the data.

switch (in_data->GetMetadata()->GetSqlType())
{

case SQL_CHAR:
{

simba_string stdString(“Hello”);
return DSITypeUtilities::OutputVarCharStringData(

&stdString,
in_data,
in_offset,
in_maxSize);

}
case SQL_VARCHAR:
{

simba_string stdString("Hello");
simba_uint32 size = stdString.size();

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
151

Data Types

http://www.magnitude.com/

in_data->SetLength(size);

memcpy(in_data->GetBuffer(), stdString, size);
return false;

}
}

SQL DataTypes in the Java SDK

This section explains the mapping between SQL types and the Simba SDK data types
for JDBC.

Note:

Because Java does not support unsigned types, SQL types that have both
unsigned and signed variations are mapped to the next largest data type.

SQL Type Data Type

SQL_BIGINT (signed) java.math.BigInteger

SQL_BIGINT (unsigned) java.math.BigInteger

SQL_BINARY byte[]

SQL_BIT java.lang.Boolean

SQL_CHAR java.lang.String

SQL_DECIMAL java.math.BigDecimal

SQL_DOUBLE java.lang.Double

SQL_FLOAT java.lang.Double

SQL_INTEGER (signed) java.lang.Long

SQL_INTEGER (unsigned) java.lang.Long

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
152

Data Types

http://www.magnitude.com/

SQL Type Data Type

SQL_INTERVAL_DAY com.simba.dsi.dataengine.utilities.DSITimeSpan

SQL_INTERVAL_DAY_
TO_HOUR com.simba.dsi.dataengine.utilities.DSITimeSpan

SQL_INTERVAL_DAY_
TO_MINUTE com.simba.dsi.dataengine.utilities.DSITimeSpan

SQL_INTERVAL_DAY_
TO_SECOND com.simba.dsi.dataengine.utilities.DSITimeSpan

SQL_INTERVAL_HOUR com.simba.dsi.dataengine.utilities.DSITimeSpan

SQL_INTERVAL_HOUR_
TO_MINUTE com.simba.dsi.dataengine.utilities.DSITimeSpan

SQL_INTERVAL_HOUR_
TO_SECOND com.simba.dsi.dataengine.utilities.DSITimeSpan

SQL_INTERVAL_MINUTE com.simba.dsi.dataengine.utilities.DSITimeSpan

SQL_INTERVAL_
MINUTE_SECOND com.simba.dsi.dataengine.utilities.DSITimeSpan

SQL_INTERVAL_MONTH com.simba.dsi.dataengine.utilities.DSIMonthSpan

SQL_INTERVAL_
SECOND com.simba.dsi.dataengine.utilities.DSITimeSpan

SQL_INTERVAL_YEAR com.simba.dsi.dataengine.utilities.DSIMonthSpan

SQL_INTERVAL_YEAR_
TO_MONTH com.simba.dsi.dataengine.utilities.DSIMonthSpan

SQL_LONGVARBINARY byte[]

SQL_LONGVARCHAR java.lang.String

SQL_NUMERIC java.math.BigDecimal

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
153

Data Types

http://www.magnitude.com/

SQL Type Data Type

SQL_REAL java.lang.Float

SQL_SMALLINT (signed) java.lang.Integer

SQL_SMALLINT
(unsigned) java.lang.Integer

SQL_TINYINT (signed) java.lang.Short

SQL_TINYINT (unsigned) java.lang.Short

SQL_TYPE_DATE java.sql.Date

SQL_TYPE_TIME java.sql.Time or
com.simba.dsi.dataengine.utilities.TimeTz

SQL_TYPE_TIMESTAMP java.sql.Timestamp or
com.simba.dsi.dataengine.utilities.TimestampTz

SQL_VARBINARY byte[]

SQL_VARCHAR java.lang.String

SQL_WCHAR java.lang.String

SQL_WLONGVARCHAR java.lang.String

SQL_WVARCHAR java.lang.String

Interval Conversions

Type Name SQL Type Parameters

INTERVAL DAY SQL_INTERVAL_DAY

Whole Day Precision

For example: INTERVAL DAY
(3)

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
154

Data Types

http://www.magnitude.com/

Type Name SQL Type Parameters

INTERVAL DAY TO
HOUR

SQL_INTERVAL_DAY_
TO_HOUR

Day Precision

For example: INTERVAL DAY
(2)

INTERVAL DAY TO
MINUTE

SQL_INTERVAL_DAY_
TO_MINUTE

Day Precision

For example: INTERVAL DAY
(2) TO MINUTE

INTERVAL DAY TO
SECOND

SQL_INTERVAL_DAY_
TO_SECOND

Day Precision, Fractional
Seconds Precision

For example: INTERVAL DAY
(2) TO SECOND (3)

INTERVAL HOUR SQL_INTERVAL_HOUR

Hour Precision

For example: INTERVAL
HOUR (3)

INTERVAL HOUR
TOMINUTE

SQL_INTERVAL_
HOUR_TO_MINUTE

Hour Precision

For example: INTERVAL
HOUR (2)

INTERVAL DAY TO
SECOND

SQL_INTERVAL_
HOUR_TO_SECOND

Hour Precision, Fractional
Seconds Precision

For example: INTERVAL
HOUR (3) TO SECOND (4)

INTERVAL MINUTE SQL_INTERVAL_
MINUTE

Minute Precision

For example: INTERVAL
MINUTE(2)

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
155

Data Types

http://www.magnitude.com/

Type Name SQL Type Parameters

INTERVAL MINUTE
SECOND

SQL_INTERVAL_
MINUTE_TO_SECOND

Minute Precision, Fractional
Seconds Precision

For example: INTERVAL
MINUTE (3) SECOND (4)

INTERVAL MONTH SQL_INTERVAL_
MONTH

Month Precision

For example: INTERVAL
MINUTE(2)

INTERVAL
SECOND

SQL_INTERVAL_
SECOND

Whole Seconds Precision,
Fractional Seconds Precision

For example: INTERVAL
SECOND (4,5)

INTERVAL YEAR SQL_INTERVAL_YEAR

Year Precision

For example: INTERVAL
YEAR(3)

INTERVAL YEAR
TOMONTH

SQL_INTERVAL_YEAR_
TO_MONTH

Year Precision

For example: INTERVAL
YEAR(2) TO MONTH)

Adding Custom SQLDataType

Using the C++ Simba SDK, you can add custom SQLDataTypes to your DSII. Each
custom data type that you add must be based on an existing data type. This allows
applications to handle your custom types transparently without requiring additional
logic.

The SQLite Sample driver demonstrates this to implement a Tweet custom data type
as a fixed length character field combined with a length field.

This functionality is available to connectors that use the SQL Engine, and to those that
do not.

Example:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
156

Data Types

http://www.magnitude.com/

You can add a type called Money that is based on Numeric, but is restricted to two
decimal places. It may also contain a custom conversion to character types that adds
the currency character.

Simba SDK uses the following classes to handle custom SQLDataTypes:

l UtilityFactory class create a SqlTypeMetadataFactory object, which
creates the metadata about the custom types.

l SqlDataFactory creates the object which represents the custom type.
l SqlConverterFactory converts the custom type to other data types.

This functionality is explained more in the instructions below.

To Add a Custom SQLDataType:

Note:

Corresponding class and function names from the SQLite sample driver are
noted in square brackets.

1. Modify your custom DSIIDriver [SLDriver] object to override and
implement the virtual method CreateUtilityFactory. In this method, return
a CustomerDSIIUtilityFactoryClass[SLUtilityFactory]. This class
provides the other factories that implement custom data type behavior.

2. Create a CustomerDSIIUtilityFactory [SLUtilityFactory] class,
which subclasses Simba::Support::UtilityFactory. This factory class
provides classes that handle the custom type metadata, data, and conversion of
the custom data types.
a. CreateSqlConverterFactory() creates a factory to create converters

that convert custom data types to other types.
b. CreateSqlDataFactory() creates a factory to create the actual

SqlData objects that represent the custom data types.
c. CreateSqlTypeMetadataFactory() creates a factory to create the

metadata about the custom data types.
3. Create a CustomerDSIISqlConverterFactory

[SLSqlConverterFactory] class which subclasses
Simba::Support::SqlConverterFactory, and override and implement
the following virtual methods:
a. CreateNewCustomSqlToCConverter() – Takes a SqlData and

SqlCData object representing the source and target types, and an
IWarningListener for posting any conversion warnings to. The
returned converter [SLCustomTypeTweetConverter] is responsible

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
157

Data Types

http://www.magnitude.com/

for converting from the source SQL data type to the target C data type.
b. CreateNewCustomCToSqlConverter() – Takes a SqlCData and

SqlData object representing the source and target types, and an
IWarningListener for posting any conversion warnings to. The
returned converter [SLCustomTypeTweetConverter] is responsible
for converting from the source C data type to the target SQL data type.

4. Create a CustomerDSIISqlDataFactory [SLSqlDataFactory] class
which subclasses Simba::Support::SqlDataFactory, and override and
implement the following virtual methods:
a. CreateNewCustomSqlData() – Takes a SqlTypeMetadata object

representing a SQL data type, which is used to determine what SqlData
object to create. Return a subclass of SqlData that represents the custom
type [SLTweetSqlData] if supported, otherwise return NULL.

5. Create a CustomerDSIISqlTypeMetadataFactory
[SLSqlTypeMetadataFactory] class which subclasses
Simba::Support::SqlTypeMetadataFactory, and override and
implement the following virtual methods:
a. CreateNewCustomSqlTypeMetadata() – Create a new

SqlTypeMetadata object that represents the custom data type specified.
The helper function SetupStandardMetadata is provided to set up the
standard type metadata for the standard SQLDataTypes. Return NULL if
the specified type is not supported.

b. SetCustomTypeDefaults() – Set the default metadata for the specified
data type on the specified SqlTypeMetadata object. This allows for
reuse of existing SqlTypeMetadata objects, rather than creating new
objects.

6. Ensure that the custom data types are reported in the metadata source for type
information. In particular, the DSI_USER_DATA_TYPE_COLUMN_TAG should
return the custom type identifier.

If your connector is using the Simba SQLEngine, then you can customize the
behavior of the data types within the SQLEngine as well by making the following
changes:

Note:

The SQLite sample driver does not currently demonstrate this, despite
using the SQLEngine.

7. In the CustomerDSIISqlConverterFactory class, override and implement
the following virtual methods:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
158

Data Types

http://www.magnitude.com/

a. CreateNewSqlToSqlConverter() – Takes a SqlData and SqlData
object representing the source and target types, and an
IWarningListener for posting any conversion warnings to. The
returned converter is responsible for converting from the source SQL data
type to the target SQL data type.

8. Modify your CustomerDSIIDataEngine object to override and implement the
virtual method CreateBehaviorProvider() to return a
CustomerDSIIBehaviorProvider. This class will provide the other factories
that provide the custom data type SQLEngine behavior.

9. Create a CustomerDSIIBehaviorProvider class which subclasses
Simba::SQLEngine::DSIExtCustomBehaviorProvider. This factory
class will initialize classes that handle the type coercion and custom type
behavior within the SQLEngine. In this context, type coercion is the conversion
of one type to a new type with similar content, where the conversion happens
automatically.
a. InitializeCellComparatorFactory() – Initializes the m_

cellComparatorFactorymember with a
CustomerDSIICellComparatorFactory that implements
ICellComparator for comparing two data type values.

b. InitializeCoercionHandler() – Initializes the m_coercionHandler
member with a CustomerDSIICoercionHandler that implements
ICoercionHandler for coercing different data types into one data type.

c. InitializeCollatorFactory() – Initializes the m_collatorFactory
member with a CustomerDSIICollatorFactory that implements
ICollatorFactory for comparing/collating text.

d. InitializeFunctorFactory() – Initializes the m_functorFactory
member with a CustomerDSIIFunctorFactory that implements
IFunctorFactory for returning functors that perform operations on
specific data types.

Note:

The behavior provider does not need to override all of the functions.
You only need to override the functions that need to be customized.

10. If custom comparisons are needed, create a
CustomerDSIICellComparatorFactory class which implements
ICellComparatorFactory. The factory should override and implement the
following virtual functions:
a. MakeNewCellComparator – Create a cell comparator that can compare

two values of the type specified by the passed in SqlTypeMetadata. The

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
159

Data Types

http://www.magnitude.com/

cell comparator should be able to do comparisons such that it can
determine when two values are equal, or one is greater than the other.
Return NULL if the comparison is not supported.

11. If custom coercions between two types are needed, create a
CustomerDSIICoercionHandler class which extends
DSIExtCoercionHandler. The handler should override and implement the
virtual functions with signature that are similar to the following:
a. Coerce*Type() – For example, CoerceLikeType. Takes

SqlTypeMetadata objects and coerces them to create one result
SqlTypeMetadata that would result from the operation that the metadata
is being coerced for. Return NULL if the coercion is not supported.

b. Coerce*ColumnMetadata() – Takes ColumnMetadata objects and
coerces them to create one result ColumnMetadata that would result from
the operation that the metadata is being coerced for. Return NULL if the
coercion is not supported.

12. If custom collations are needed, create your own collation interface by extending
ICollation. Override and implement the required virtual functions as shown in
ICollation.h.

You can choose to implement the CreateHashermethod in the ICollation
interface. This method returns an IHasher interface that the Simba SDK uses to
perform join operations. By default, ICollation::CreateHasher returns
null.

If you implement your own ICollation and your own IHasher, queries that
contain equality joins on your custom type columns will complete more quickly,
because Simba SDK can use a hash-based join algorithm.

Follow these guidelines when implementing IHasher::Hash:
l Return a uint64 value for each string buffer that is passed in.
l Always return the same value for the same string buffer and/or seed value
input.

l For optimal performance, return unique values for each different string
buffer and seed input. That is, try to prevent collisions in your hash
implementation.

l For optimal performance, create return values that evenly span a uint_64
range. That is, the return values should have a uniform and independent
distribution of bits.

For an example IHasher implementation, see DSIUnicodeHasher or
DSIBinaryHasher. These classes use the Murmur hash function, which

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
160

Data Types

http://www.magnitude.com/

satisfies the requirements listed above. An alternative to using Murmur is to use
the DSIBinaryHasher on a collation normalized buffer, also called a “collation
key”.

13. If custom operation behavior is needed, create a
CustomerDSIIFunctorFactory class which extends
DSIExtFunctorFactory. The factory should override and implement the
following virtual functions:
a. CreateBinaryArithmeticFunctor() – Create a new

DSIExtBinaryValueFunctor subclass which handles the specified
arithmetic operation of two values of the type specified by the
SqlTypeMetadata. The DSIExtBinaryValueFunctor should operate
on the m_leftData and m_rightDatamember values during Execute
().

b. CreateComparisonFunctor – Create a new
DSIExtBinaryBooleanFunctor subclass which handles the specified
comparison between two values of the type specified by the
SqlTypeMetadata. The DSIExtBinaryBooleanFunctor should
operate on the m_leftData and m_rightDatamember values during
Execute, and use the ICollator supplied by the ICollatorFactory
if needed.

c. CreateNegationFunctor – Create a new
DSIExtUnaryValueFunctor subclass which handles negation of the
type specified by the SqlTypeMetadata. The
DSIExtUnaryValueFunctor should operate on the m_datamember
during Execute.

d. CreateExistsFunctor – Create a new DSIExtBinaryValueFunctor
subclass which handles the EXISTS clause for the type specified by the
SqlTypeMetadata. The DSIExtBinaryValueFunctor should operate
on the m_leftData and m_rightDatamember values during Execute.

e. CreateInFunctor – Create a new DSIExtBinaryValueFunctor
subclass which handles the IN clause for the type specified by the
SqlTypeMetadata. The DSIExtBinaryValueFunctor should operate
on the m_leftData and m_rightDatamember values during Execute
().

f. CreateLikeFunctor() – Create a new DSIExtBinaryValueFunctor
subclass which handles the LIKE clause for the type specified by the
SqlTypeMetadata. The DSIExtBinaryValueFunctor should operate
on the m_leftData and m_rightDatamember values during Execute
().

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
161

Data Types

http://www.magnitude.com/

ODBC Custom C Data Types

Using the C++ Simba SDK, you can add custom C data types to your DSII. Each
custom data type that you add must be based on an existing data type. This allows
applications to handle your custom types transparently without requiring additional
logic.

This functionality is available to connectors that use the SQL Engine, and to those that
do not.

Simba SDK uses a UtilityFactory class to create a SqlCTypeMetadataFactory
object to create the metadata about the custom types, then use and a
SqlConverterFactory to convert the custom type to other data types.

The SQLite Sample driver demonstrates this by implementing a Tweet custom data
type as a fixed length character field combined with a length field.

To Add Custom C Data Types:

Note:

Corresponding class and function names from the SQLite sample driver are
noted in square brackets.

1. Create a header file to package with your ODBC connector. In this header file,
define the type ID for your custom C type, field ID’s for any custom metadata
fields, and the struct of your custom C data type. Note that field ID’s must start at
0x4100.

2. Modify your CustomerDSIIDriver [SLDriver] object to override and
implement the virtual method CreateUtilityFactory() to return a
CustomerDSIIUtilityFactoryClass [SLUtilityFactory]. This class
will provide the other factories that implement custom data type behavior.

3. Create a CustomerDSIIUtilityFactory [SLUtilityFactory] class
that subclasses Simba::Support::UtilityFactory . This factory class will
provide classes that handle the custom type metadata, data, and conversion of
the custom data types.
a. CreateSqlConverterFactory() creates a factory to create converters

that convert custom data types to other types.
b. CreateSqlCDataTypeUtilities() creates a utility class which

describes the custom C data types.
c. CreateSqlCTypeMetadataFactory() creates a factory to create the

metadata about the custom data types.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
162

Data Types

http://www.magnitude.com/

4. Create a CustomerDSIISqlConverterFactory
[SLSqlConverterFactory] class which subclasses
Simba::Support::SqlConverterFactory , and override and implement
the following virtual methods:
a. CanConvertCustomCTypeToSql() takes the ID of a custom C data

type and the TDWType enum of the target SQL type to convert to, and
determines if the type conversion can be performed.

b. CanConvertSqlToCustomCType() takes the TDWType enum of a SQL
data type and the ID of a custom C data type to convert to, and determines
if the type conversion can be performed.

c. CreateNewCustomSqlToCConverter() takes a SqlData and
SqlCData object representing the source and target types, and an
IWarningListener for posting any conversion warnings to. The returned
converter [SLCustomTypeTweetConverter] is responsible for
converting from the source SQL data type to the target C data type.

d. CreateNewCustomCToSqlConverter() takes a SqlCData and
SqlData object representing the source and target types, and an
IWarningListener for posting any conversion warnings to. The returned
converter [SLCustomTypeTweetConverter] is responsible for
converting from the source C data type to the target SQL data type.

5. Create a CustomerDSIISqlCDataTypeUtilities
[SLCDataTypeUtilities] class which subclasses
SqlCDataTypeUtilities , and override and implement the following two
methods:
a. IsSupportedCustomType() takes in the ID of a type and determines if

it is a valid custom C data type.
b. GetStringForCType() takes is in the ID of a C data type and returns the

string representation of it.

Optionally override the following two methods if the custom C data type will
support custom metadata fields:
a. IsSupportedCustomMetadataField() takes in the ID of a field

identifier, along with the field’s indent and determines if the field identifier
and indent are valid.

b. GetCustomMetadataFieldType() takes in the field indent and returns
the data type that it represents.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
163

Data Types

http://www.magnitude.com/

Note:

When you override a function, your custom function should defer to the
implementation of the parent class when the ID of a non-custom type is
passed in. That is, your custom function should only handle your custom
types.

6. Create a CustomerDSIISqlCTypeMetadataFactory
[SLCTypeMetadataFactory] class which subclasses
Simba::Support::SqlCTypeMetadataFactory , and override and
implement the following virtual methods:
a. CreateNewCustomSqlCTypeMetadata() creates a new

SqlCTypeMetadata object that represents the custom C data type
specified.

b. ResetCustomTypeDefaults() sets the default values for the custom C
data type.

Optionally create CustomerSqlCTypeMetadata which subclasses
SqlCTypeMetadata if custom metadata fields are required for the custom C
data type. This object will then be constructed and returned by the
CreateNewCustomSqlCTypeMetadata()method.

In CustomerSqlCTypeMetadata , the SetField()/GetField()methods
must be overridden if there are custom metadata fields to set/get.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
164

Data Types

http://www.magnitude.com/

Simba SQLEngine

The Simba SQLEngine is a self-contained SQL parser and execution engine that you
can use in your custom connector to convert SQL queries and commands into a format
that your data store understands. This component allows you to add SQL processing
capability to a non-SQL-capable data store, making your data available to common
reporting tools through standard interfaces. The Simba SQLEngine can also expose
support for Data Definition Language (DDL), Data Manipulation Language (DML), and
Data Control Language (DCL) SQL statement, if your data store supports this
functionality.

The Simba SQLEngine consumes SQL-92 queries, parses them, and creates an
optimized execution plan, then allows your DSI implementation to take over part or all
of the execution, and finally executes the plan against the DSI implementation. To use
the Simba SQLEngine, your DSI implementation must translate your data store
schema into a view with tables and columns.

Simba SQLEngine Architecture

The Simba SQLEngine is available in the C++ and Java version of the Simba SDK.
You can create ODBC connectors and pure-Java JDBC connectors for data sources
that do not support SQL. You can also use a C# development environment to write the
data access portion of your connector, and then use CLI to link with the C++ Simba
SDK.

Note:

To write a custom connector for client-server deployment, you must use the
C++ Simba SQLEngine.

The Simba SQLEngine does not expose another API. It is designed to be enclosed
between two instances of the DSI. The top end of the Simba SQLEngine is compatible
with the SimbaODBC, SimbaJDBC, or SimbaServer DSI specification. Your connector
code can link directly to the C++ Simba SQLEngine to create a stand-alone
ODBC connector or a server, or it can link directly to the Java Simba SQLEngine to
create a stand-alone JDBC connector.

The bottom end of Simba SQLEngine is compatible with another part of the DSI
specification, which calls into a DSI implementation that connects to a non-SQL data
store.

At a high level, the Simba SQLEngine is composed of the Preparation component, the
Execution component, and the Execution tree. The Preparation component contains

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
165

Simba SQLEngine

http://www.magnitude.com/

the SQL parser. It also validates the SQL by ensuring that data store objects such as
tables and columns exist. Once the SQL statement is prepared, it is handed to the
Execution component. The Execution component provides the environment for
executing the execution tree and retrieving the result set.

This architecture is illustrated in the following diagrams:

Architecture of the C++ Simba SQLEngine

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
166

Simba SQLEngine

http://www.magnitude.com/

Architecture of the Java Simba SQLEngine

Optimizing Queries with the Simba SQLEngine

The Simba SQLEngine contains several features that allow you to optimize queries
and improve performance in your custom connector.

If your data store implements indexes or a similar functionality, or if it is able to find
specific data rows very quickly, then Simba SQLEngine can use this functionality to
optimize operations such as filtering and sorting. Your data store does not have to
implement indexes according to the Indexed Sequential Access Method (ISAM)
model. As long as the data store can seek to specific data rows as if it was using an
index (that is, faster than the Simba SQLEngine could step through the data itself),
then Simba SQLEngine can use that functionality as if it was a real index. For more
information on using Indexes, see Support for Indexes.

If your data store has high performance features that enable fast processing of some
queries or commands, you can tell the Simba SQLEngine to pass these sections of the
command directly to the data store. This feature is called Collaborative Query

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
167

Simba SQLEngine

http://www.magnitude.com/

Execution. For more information on Collaborative Query Execution, see Collaborative
Query Execution.

Simba SQLEngine also uses table cardinality and other metadata to optimize the
query before execution. If indexes and table cardinality are not available, Simba
SQLEngine will still work, but it will be slower because it will not be able to perform the
more advanced optimizations.

Related Topics

Collaborative Query Execution

SQL Engine Memory Management

Data Manipulation Language (DML)

Data Definition Language (DDL)

Support for Indexes

Sample Index Implementation

Custom Scalar and Aggregate Functions

Stored Procedures

Collaborative Query Execution

SQL Engine has features that allow a DSII to alter and optimize the execution of a
query according to the strengths of the data store. This takes place by providing
access to the Algebraic Expression Tree (AE-Tree), which is an object-oriented
representation of the operations necessary to perform the query. The ability to
optimize the tree comes in two different forms:

l You have full access to the AE-Tree. You can analyze it and add, remove, or
alter the nodes.

l Or, the SQL Engine can analyze the tree for you. It will use pass-down handlers
for the operations that can often be executed in the data store, thus eliminating
the need for them to be processed in the SQL engine.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
168

Simba SQLEngine

http://www.magnitude.com/

Note:

l For a JDBC connector, the functionality described in this section can be
accomplished using the Java SQL Engine.

l The SQLite sample implements some of the Collaborative Query
Execution (CQE) optimizations. You can use it as a reference for
implementing your own optimizations.

The advantage of using Collaborative Query Execution is that it allows your DSII to
take over execution of the parts of the SQL query that your data store excels at, while
leaving the rest to the Simba SQLEngine. For instance, if your data store can join
tables extremely quickly, then this operation can be executed by your DSII while
Simba SQLEngine takes care of the rest of the operations. When Simba SQLEngine
and your DSII use Collaborative Query Execution, your connector supports all of the
SQL that Simba SQLEngine supports, while still exposing the strengths of your data
store.

If your data store cannot perform any additional operations, then Collaborative Query
Execution does not need to be used. Simba SQLEngine will still support the full range
of SQL in a fast and efficient manner.

Passing Down Processing to a Data Store

Before it executes a SQL statement, Simba SQLEngine can pass an optimized
representation of the SQL statement to the DSI implementation. This optimized
representation is called an Algebraic Expression Tree, or AE-Tree. The SQL
statement takes this form just before Simba SQLEngine transforms it into an execution
plan and executes it. When Simba SQLEngine passes the AE-Tree to the DSI
implementation, the DSI implementation can choose to execute any part of the AE-
Tree itself. It signals its intentions by modifying the AE-Tree before returning it to
Simba SQLEngine.

For example, if your data store can filter data, or join data, or execute aggregate
functions quickly, it can modify those nodes of the AE-Tree to point to the DSI
implementation for execution. The DSI implementation can modify any part of the AE-
Tree if it can perform the execution quickly, or it can replace the entire tree and
execute the whole query itself.

The following diagram illustrates an example of creating an AE-Tree passing down a
filter to the data store, then replacing the original table node with a new filtered table
node:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
169

Simba SQLEngine

http://www.magnitude.com/

The diagram above shows three views of a notional AE-Tree corresponding to the
SQL query SELECT Col1 FROM Table1 WHERE Col2 = 23.

1. The first view shows the AE-Tree originally created by Simba SQLEngine. All the
columns in the projection are retrieved and filtered by the Simba SQL execution
engine.

2. The second tree is the same as the first. “Table1” and sub-tree rooted from “=” ,
shown in the highlighted section, are passed down to the data store. That is, the
SQL Engine provides access to those nodes so that the DSII can determine
whether it can handle the filter. The original tree is not changed until the DSII
tells the SQL Engine that the filter can be passed down.

3. If pass-down succeeds, it is converted into the tree shown in the third view,
where “Selection” and “=” are replaced by “Table1’”.

After the DSI implementation passes back the AE-Tree, Simba SQLEngine transforms
the modified AE-Tree into an execution plan and executes it. Simba SQLEngine
execution engine, and the DSI implementation and data store collaborate on the
execution of the SQL statement, with the data store executing the parts it can do
quickly, and Simba SQLEngine executing the rest. Of course, the DSI implementation
does not have to modify the AE-Tree at all. Simba SQLEngine can execute the entire
SQL statement relatively quickly and efficiently by itself.

Related Topics

Statements

Pass-Down Operation Handlers

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
170

Simba SQLEngine

http://www.magnitude.com/

Algebraic Expression Tree and Optimization

Before it executes an SQL statement, the Simba SQLEngine can pass a
representation of the SQL statement, called an Algebraic Expression Tree, or AE-
Tree, to your DSI implementation. The SQL statement takes this form before the
Simba SQLEngine transforms it into an execution plan and executes it.

The AE-Tree is optimized in a three-step process, the first two of which are handled
internally by the Simba SQLEngine. First, tables are re-ordered within the query, then
operations are pushed-down in the AE-Tree, and finally operations are passed down
to the DSII via Collaborative Query Execution (CQE). This section briefly reviews the
three steps to give developers using the Simba SQLEngine some insight into the
whole optimization process. Although CQE is only involved in the third step, it is useful
to first understand the first two steps that the Simba SQLEngine performs during
optimization.

Note:

The AE-Tree diagrams shown in this section were generated by the
SQLEngine logs that are controlled by the DSIEXT_DATAENGINE_LOG_
AETREES data engine property. This property includes values for logging in
four different locations, each of which corresponds to a step in the optimization
process as that have been outlined above. These AE-Tree logs can be used to
help understand what is going on in each case.

Step 1 – Table Reordering

Cross joins, which can result when a query is made against multiple tables, are a very
common occurrence. Thus an important optimization is to attempt to change them into
INNER JOINs since passing down cross joins later on could negate other
optimizations. To accomplish this, the tables are first re-ordered within the AE-Tree, to
allow for SELECT nodes with a child CROSS-JOIN to be converted into an INNER
JOIN which can eventually be passed-down via CQE. The conversion to an INNER
JOIN in itself reduces the number of rows that will be returned. Note that additional
optimizations based on table statistics may be added in the future.

Consider the following example query:

SELECT EMPLOYEE.FIRST_NAME FROM EMPLOYEE, ADDRESS, DEPT WHERE
EMPLOYEE.DEPT=DEPT.DEPT_ID

Before optimization, the AE-Tree looks as follows:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
171

Simba SQLEngine

http://www.magnitude.com/

AEQuery
AEProject
AESelect
AECrossJoin
AECrossJoin

AETable: DBF.Shop.EMPLOYEE
AETable: DBF.Shop.ADDRESS

AETable: DBF.schema.DEPT
AEComparison: EQ
AEValueList

AEColumn: DBF.Shop.EMPLOYEE.DEPT

AEValueList

AEColumn: DBF.schema.DEPT.DEPT_ID

AEValueList
AEColumn: DBF.Shop.EMPLOYEE.FIRST_NAME

In its current form, the AESelect node can’t be pushed down in a later optimization as
the condition involves a table in another cross-join, and thus we can’t turn the
AESelect->AECrossJoin relation into an inner join as the two tables involved in the
filter are at different levels. After re-ordering the tables, we have the following AETree:

AEQuery

AEProject

AESelect

AECrossJoin

AECrossJoin

AETable:
DBF.Shop.EMPLOYEE
AETable:
DBF.schema.DEPT

AETable: DBF.Shop.ADDRESS

AEComparison: EQ

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
172

Simba SQLEngine

http://www.magnitude.com/

AEValueList

AEColumn:
DBF.Shop.EMPLOYEE.DE
PT

AEValueList

AEColumn:
DBF.schema.DEPT.DEP
T_ID

AEValueList

AEColumn: DBF.Shop.EMPLOYEE.FIRST_
NAME

You can see the ADDRESS and DEPT tables have swapped positions, and now the
AESelect can be pushed down to involve only the two required tables, which allows
the AESelect operation to be turned into an inner join which can be passed-down.
Conceptually, this would be the same as the following query:

select EMPLOYEE.FIRST_NAME from DEPT, EMPLOYEE, ADDRESSWHERE
EMPLOYEE.DEPT= DEPT.DEPT_ID

Step 2 – Push Down Optimization

The second step involves push-down optimizations where by filters are pushed down
the AE Tree by the SQLEngine to their lowest possible location. This is not to be
confused with pass-down optimization (CQE) which is the third and final step.

Push down optimization allows for data to be filtered out at the earliest possible time,
reducing work for the SQLEngine. In addition, AESelect->AECrossJoin relationships
are transformed into AEJoin nodes if possible. Other optimizations may also be
performed during this phase, but the push down is the most significant.

To demonstrate pushing down of a simple filter, consider the following query:

select EMPLOYEE.FIRST_NAME from EMPLOYEE, ADDRESS where
EMPLOYEE.FIRST_NAME = ‘Susan’

which has an AETree that looks like this before push-down:

AEQuery
AEProject
AESelect

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
173

Simba SQLEngine

http://www.magnitude.com/

AECrossJoin
AETable: DBF.Shop.EMPLOYEE
AETable: DBF.Shop.ADDRESS
AEComparison: EQ
AEValueList

AEColumn: DBF.Shop.EMPLOYEE.FIRST_NAME

AEValueList

AELiteral: Susan; Character String Literal

AEValueList
AEColumn: DBF.Shop.EMPLOYEE.FIRST_NAME

You can see that the AESelect is above the AECrossJoin, which means the condition
would be applied to the result of the cross-join, and thus be applied to many more rows
than was needed. After push-down the AETree looks as follows:

AEQuery

AEProject

AECrossJoin

AESelect

AETable: DBF.Shop.EMPLOYEE
AEComparison: EQ

AEValueList

AEColumn:
DBF.Shop.EM
PLOYEE.FIRS
T_NAME

AEValueList

AELiteral:
Susan; Character
String Literal

AETable: DBF.Shop.ADDRESS

AEValueList

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
174

Simba SQLEngine

http://www.magnitude.com/

AEColumn: DBF.Shop.EMPLOYEE.FIRST_
NAME

Here you can see that the AESelect has been pushed down so the condition is only
applied to the EMPLOYEE table, and the cross-join is then applied to the filtered
EMPLOYEE result and the ADDRESS table, resulting in many fewer rows being
processed.

To demonstrate pushing down of filters which cause an AESelect->AECrossJoin
relationship to become an AEJoin, we can continue the example from the table re-
order phase from above which had an AETree that looked like this:

AEQuery

AEProject

AESelect

AECrossJoin

AECrossJoin

AETable:
DBF.Shop.EMPLOYEE
AETable:
DBF.schema.DEPT

AETable: DBF.Shop.ADDRESS

AEComparison: EQ

AEValueList

AEColumn:
DBF.Shop.EMPLOYEE.DE
PT

AEValueList

AEColumn:
DBF.schema.DEPT.DEP
T_ID

AEValueList

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
175

Simba SQLEngine

http://www.magnitude.com/

AEColumn: DBF.Shop.EMPLOYEE.FIRST_
NAME

After the push-down phase, the tree looks like this:

AEQuery

AEProject

AECrossJoin

AEJoin: AE_INNER_JOIN

AETable: DBF.Shop.EMPLOYEE
AETable: DBF.schema.DEPT

AEComparison: EQ

AEValueList

AEColumn:
DBF.Shop.EM
PLOYEE.DEPT

AEValueList

AEColumn:
DBF.schema.DEPT.DEP
T_ID

AETable: DBF.Shop.ADDRESS

AEValueList

AEColumn: DBF.Shop.EMPLOYEE.FIRST_
NAME

What has happened here is that the AESelect was pushed down one level as the filter
condition only applied to the EMPLOYEE and the DEPT table, so the ADDRESS table
could be left out of the filtering. Once this happened, there was an AESelect-
>AECrossJoin relationship where the condition for the AESelect only involved the two
child tables, and could be turned into an AEJoin.

Note that the transformation of an AESelect->AECrossJoin into an AEJoin only occurs
after the initial push-down of filters occurs. This is to allow filters that might apply only
to one operand of the AECrossJoin to be pushed down directly to that operand and not
be applied at the join level.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
176

Simba SQLEngine

http://www.magnitude.com/

Step 3 – Pass Down Optimization (CQE)

The third and final step is pass down optimization in which the Simba SQLEngine
passes portions of the AE Tree to the pass down handlers implemented in your DSI.
When the Simba SQLEngine passes a subtree to your DSI handlers, these handlers
can choose to execute all or part of the operation reflected in that subtree.

For instance, if the data store can filter data, join data, or execute aggregate functions
particularly fast, pass down handlers can be used to signal to the Simba SQLEngine
that the DSII will handle all or part of the operation. In this case the handler will return
an optimized result set which the Simba SQLEngine will update the AE Tree subtree
with.

Note:

l The terms Pass-down and CQE are used interchangeably.
l Although the Simba SQLEngine passes the AE Tree to the handlers,
handlers should not directly manipulate the tree. Direct manipulation
should be done by implementing an IQueryExecutor as described in
Pre Optimization Analysis of the AE Tree.

Before discussing these pass down handlers, it’s important to review the four main
types of AENodes in an AE Tree as these will be used as input to the various handlers:
Statements; Boolean; Query Operations and Relational Expressions; and Values.
Each of these is explained below.

Statements

The root node of the tree representing the type of operation being performed: Query,
Procedure Call, or DML. The first two are represented by nodes of typeAEQuery
andAEProcedureCall respectively, while DML statements are represented by
statement nodes which subclassAERowCountStatement.

Boolean

A logical expression representing a true or false outcome. The most common use of
this is for the WHERE clause of a SELECT statement.The base class of this type of
node isAEBooleanExpr.

Query Operations and Relational Expressions

A representation of retrieval or manipulation of relational data such as selecting from a
table. The base class of this type of node isAEQueryOperation. These nodes
represent operations on the entire query result, such as sorting.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
177

Simba SQLEngine

http://www.magnitude.com/

AERelationalExpr, which derives fromAEQueryOperation, is the base class of
most other nodes of this type. They represent retrieval, filtering, or modification of
some relational data. Typically, they take one or two other relational expressions as an
operand.

Three such examples are:

l AETable – This represents the retrieval of data from a table in your data store.
l AESelect – This represents the WHERE clause of a query by taking another
relational expression and combining it with a boolean expression to use as a
filter. The operand may be as simple as an AETable or a complicated
combination of many other relational expressions.

l AEJoin – This represents any join of two tables or relational expressions and an
optional boolean expression to use as a join condition.

Values

A representation of a scalar value that is either a literal, a parameter, a column
reference, or an expression composed of one or more other values. The base class of
this type of node isAEValueExpr. The basic value expression nodes from which other
values are built from areAELiteral, AEParameter, andAEColumn. Most arithmetic
value expressions derive fromAEUnaryValueExpr orAEBinaryValueExpr to
represent an operation on one or two value expression operands.

Related Topics

Collaborative Query Execution

Pass-Down Operation Handlers

Pass-Down Operation Handlers

After parsing a SQL query and generating the AE-Tree, the Simba SQLEngine does
analysis to identify the following types of operations that a data store may be able to
handle in an optimized way:

l Filter
l Join
l Aggregation
l Projection
l Union
l Distinct
l Top
l Sort

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
178

Simba SQLEngine

http://www.magnitude.com/

l Except
l Intersect
l Pivot
l Unpivot

Note:

Pivot and Unpivot require the implementation of passdown in the DSII because
SQLEngine does not handle them at this time.

After identifying these operations, the Simba SQLEngine checks if the operation
handlers for each operation exist and if passdown is enabled. If so, the SQLEngine
attempts to pass down details of the operation to the DSII so that it may fully or partially
perform that operation. If it can’t perform the operation, it will fall back to being
performed by the Simba SQLEngine.

The operation handlers are constructed by a factory class,
DSIExtOperationHandlerFactory, which you must subclass to construct your
own handler classes. The factory class itself is to be constructed by overriding the
DSIExtSqlDataEngine::CreateOperationHandlerFactorymethod. Under
the Java Simba SQLEngine, the equivalent method is
SqlDataEngine.createOperationHandlerFactory(). Note that a subclass of
DSIExtSqlDataEngine (SqlDataEnginefor Java) is required since CQE may
utilize the Simba SQLEngine. See Implementation.

More generally, any connector which uses the Simba SQLEngine for execution must
subclass DSIExtSqlDataEngine, or SqlDataEngine if building a JDBC
connector.

Note:

If you don’t want to support pass downs, for example if you don’t plan to have
pass down handler implementations, then return nullin the
CreateOperationHandlerFactory override in your
DSIExtSqlDataEngineor SqlDataEngine derived class. The sample
takes this a step further by providing the ability to enable or disable pass down
support at runtime by setting PASSDOWN=1 or PASSDOWN=0 respectively in
the connector’s registry settings or in the DSN connection string.

In the SQLite example, the SLDataEngine class constructs a
CBOperationHandlerFactory:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
179

Simba SQLEngine

http://www.magnitude.com/

AutoPtr<DSIExtOperationHandlerFactory>
SLDataEngine::CreateOperationHandlerFactory(){

AutoPtr<DSIExtOperationHandlerFactory> if (!m_
settings.m_disablePassdown) result.Attach(new
SLOperationHandlerFactory(*GetLog(), *this));

{
result.Attach(new
SLOperationHandlerFactory(*GetLog
(), *this));
}

return result;
}

The SLOperationHandlerFactory then returns the appropriate subclassed
handlers via the respective methods (e.g. CreateFilterHandler(),
CreateJoinHandler(), etc.) which are invoked by Simba SQLEngine.

Each handler class defines and implements some or all of the following methods which
will be invoked by the Simba SQLEngine during CQE:

l Passdown()

This method is defined and implemented for all handlers because it performs the
pass down logic. Depending on the type of handler, this method may return a
scalar (e.g. the number of rows found in a count operation), boolean (e.g.
indicating if an expression can be handled), or a result set (e.g. an aggregated
result set).

l TakeResult()

Returns a result set generated by the DSII. This method is defined and
implemented only for Join, Filter, and Sort handlers and thus used in cases
where Passdown() indicates a status result of whether the expression could be
handled either fully, partially, or not at all. In these cases, the operation handling
and result generation are performed via two methods (Passdown() and
TakeResult() respectively), as opposed to just using the Passdown() method.
This allows the Join, Filter, and Sort operations to indicate to the Simba
SQLEngine whether the DSII will be able to handle the operation (i.e. supports
it), and if so, whether it can handle it fully or partially.

l CanHandleMoreClauses()

This method is defined and implemented in the handler used for Joins and Filters
and is invoked by the Simba SQLEngine so that the handler can signal whether

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
180

Simba SQLEngine

http://www.magnitude.com/

or not any further passdowns of expressions should be made to the handler. For
example, a Join handler may determine that predicates cannot be handled by
the DSII and thus no further pass downs should be sent to the handler.

More information about each handler and their usage of these methods is provided
next.

Filter and Join Handlers

Both filters and join pass-downs are handled by classes of type
IBooleanExprHandler. Note that a join is conceptually a filter applied to the result
of a cross join, which is why it is also handled by the same interface as for filters
(IBooleanExprHandler). Both are constructed from one or two base tables and
then the filter or join conditions are passed down. For each passed-down condition,
the handler must return true or false indicating if it will process the filter. If it returns
true, the Simba SQLEngine will remove that filter clause from the AE-Tree and use the
result set returned by IBooleanExprHandler::TakeResult instead of the base
table(s). In the case of a filter handler, the returned result set must have the same
columns as the base table. For a join handler, the returned result set must have all the
columns of the left base table followed by all the columns of the right base table.

If the handler returns false there are several possibilities. If the filter or join condition is
a conjunction, the engine will attempt to pass down each conjunct individually,
allowing your handler to selectively handle each. Like before, for each clause that
returns true when passed down, it will be removed from the AE-Tree. Clauses that
return false will still be processed by the Simba SQLEngine.

If all conjuncts return false when passed down the engine, it will still call
IBooleanExprHandler::TakeResult. If a non-null result set is returned, the
engine will replace the base table(s) in the AE-Tree with the returned result but still
process all the filter conditions on top of the new result. This allows a handler to
partially process a filter in the data store, reducing the size of the result that the engine
must fully process the filter on. If TakeResult returns null, then no change will be made
to the AE-Tree.

To implement your handler there are several base classes to choose from:

l IBooleanExprHandler

This class has one passdown function to which all AEBooleanExpr nodes will
be passed.

l DSIExtAbstractBooleanExprHandler

This class implements the passdown method to delegate the passdown of each
type of node to separate passdown methods.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
181

Simba SQLEngine

http://www.magnitude.com/

l DSIExtSimpleBooleanExprHandler

This class subclasses DSIExtAbstractBooleanExprHandler further to
implement several of these previous methods to identify and pass down some
simple cases that are easier to handle, such as simple comparisons between
two columns or a column and a literal.

Typically you will subclass the DSIExtSimpleBooleanExprHandler, which
provides support for some common boolean conditions. Note that classes that inherit
from SimpleBooleanExprHandler only handle AND conditions. To handle OR
conditions you must override PassdownOr(). If you need more functionality then you
should override other functions in the parent classes as needed, or subclass
DSIExtAbstractBooleanExprHandler.

DSIExtAbstractBooleanExprHandler has Passdown*() functions, such as
PassdownOr() and PassdownNot(). These functions take AETree nodes, which
should be inspected to see if your DSII can handle the condition. If so, then Passdown
() should return true and TakeResult() should return a result set representing the
filtered result.

For more information on filters, see http://www.simba.com/resources/sdk/knowledge-
base/cqe-filters/.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
182

Simba SQLEngine

http://www.simba.com/resources/sdk/knowledge-base/cqe-filters/
http://www.simba.com/resources/sdk/knowledge-base/cqe-filters/
http://www.magnitude.com/

Filter Example

Consider a typical filter query such as the following:

select EMPLOYEE.first_name from EMPLOYEE, ADDRESS where
EMPLOYEE.FIRST_NAME = ‘Susan’

Before the pass-down optimization step, the AE Tree looks like this:

AEQuery

AEProject

AECrossJoin

AESelect

AETable: DBF.Shop.EMPLOYEE
AEComparison: EQ

AEValueList

AEColumn:
DBF.Shop.EM
PLOYEE.FIRS
T_NAME

AEValueList

AELiteral:
Susan;
Character
String
Literal

AETable: DBF.Shop.ADDRESS

AEValueList

AEColumn: DBF.Shop.EMPLOYEE.FIRST_
NAME

In the SQLite example connector, SLFilterHandler class handles the pass down.
After passing this tree down to SLFilterHandler, the AE Tree now looks as follows:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
183

Simba SQLEngine

http://www.magnitude.com/

AEQuery

AEProject

AECrossJoin

AETable: DBF.Shop.EMPLOYEE
AETable: DBF.Shop.ADDRESS

AEValueList

AEColumn: DBF.Shop.EMPLOYEE.FIRST_
NAME

SQLite's SLFilterHandler class has handled the filter (EMPLOYEE.FIRST_NAME
= ‘Susan’) and returned a SLPassdownResultTable object (a subclass of
SLTableBase) representing that result to the SQLEngine. The SQLEngine uses this
result returned from the DSII to do the filtering for it, and discards the AESelect node
that was previously used.

Through CQE with SLFilterHandler, the Simba SQLEngine has performed the
following steps to accomplish this:

1. Attempt to pass-down the entire condition for the AESelect node.
2. Is passing down the condition successful (Passdown() returned true)?

A. Yes, Passdown() returned true. Call TakeResult() and substitute the
returned result in for the AESelect node.

B. No, Passdown() returned false. Is there only one CNF clause (see below
for more information CNF clause handling)?
a. Yes, only one clause. Call TakeResult() and substitute the

returned result, if any, for the AETableoperand of the AESelect.
b. No, more than one clause. Attempt to pass-down each CNF clause

one-by-one. For each CNF clause passed down, is passing down the
clause successful?

i. Yes, Passdown()returned true. Record the clause and
continue to the next clause. If no more clauses, go to Step iii.

ii. No, Passdown()returned false. Attempt to break clause
down according to step ii and pass-down, then continue to the
next clause. If no more clauses, go to Step iii.

iii. Call TakeResult() and substitute the returned result, if any,
for the AETable operand of the AESelect. Remove any
clauses that were recorded in Step 1 from the AESelect
condition.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
184

Simba SQLEngine

http://www.magnitude.com/

A CNF clause is any clause that is separated by an &&. For example, with the
condition (A || B) && (C && D), the statement could be broken down by one step to the
following two clauses:

l (A || B)
l (C && D)

The first clause could not be broken down any further, but the second could be broken
down into:

l C
l D

The SQLEngine will recursively try and pass-down CNF clauses to the DSII for it to
handle, until the DSII either handles the full clause or there are no more clauses to
pass down. Note that (A || B) could not be broken down and passed down to the DSII
because if the DSII filtered out rows according to clause A, then it may have filtered out
rows that would pass for clause B, thus causing an incorrect result to be returned.

Note:

If a filter is to be applied on the result of a sub-section of the AETree, and that
section had an operation which could not be handled via CQE by the DSII, then
the filter will not be passed to the DSII. This is because if the DSII could not
handle the operation that would result in the result set to be filtered, then it
would not be possible for it to then apply a further filter on that result set. For
example, consider the following query:

select * from (select * from EMPLOYEE where NUM_SALARY >
10000) t1 WHERE t1.FIRST_NAME = ‘Susan’

If the DSII can’t apply the filter “NUM_SALARY > 10000″ then it would also not
be able to apply the filter “FIRST_NAME = ‘Susan'”, as that filter would need to
be applied to the result of “select * from EMPLOYEE where NUM_SALARY >
10000″.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
185

Simba SQLEngine

http://www.magnitude.com/

Implementation

The SLFilterHandler constructor is the first significant method to review. During
construction, the handler factory passes in the table on which the filter is to be applied
to, if the handler is able to do so, along with the connector setting information:

SLFilterHandler::SLFilterHandler(

SharedPtr<SLTableBase> in_table,simba_unsigned_native
in_paramSetCount,ILogger& in_log)
:
m_table(in_table),
m_paramSetCount(in_paramSetCount),
m_log(in_log)
{

assert(!in_table.IsNull());
m_table->GetTableName(m_tableName);

}

A reference to the table is stored for use during the pass down operation as well as for
the connector’s settings. In addition, the count of parameter set and driver's log
information are also stored for use during PassdownComparison() and
TakeResult().

The next method to review is Passdown().SLFilterHandler does not directly
implement Passdown() as this has been implemented in its parent class. Instead it
implements variousPassdown()“sub” methods which the parent class delegates
(invokes). For example, the partial snippet below from
SLFilterHandler::PassdownComparison() shows some of the checks that the
class performs near the start of the pass down. This includes checks for whether the
pass down is enabled, the filter is on a table, and if exactly one operand is being
compared on each side of the filter. Additional checks not shown in this partial snippet
are also performed after which the class constructs a filter string to be used in
obtaining the final result set in TakeResult():

bool SLFilterHandler::PassdownComparison(AEComparison* in_
node)
{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
186

Simba SQLEngine

http://www.magnitude.com/

// After project, they are back to their original
name, so no need to rename.
// This case is for handling passdown of parameters.
AEValueList* lOperand = in_node->GetLeftOperand();
AEValueList* rOperand = in_node->GetRightOperand();
if ((1 != lOperand->GetChildCount()) || (1 !=
rOperand->GetChildCount()))
{
return false;
}
AEValueExpr* lExpr = lOperand->GetChild(0);
AEValueExpr* rExpr = rOperand->GetChild(0);
SEComparisonType compOp = in_node->GetComparisonOp();
if ((AE_NT_VX_COLUMN != lExpr->GetNodeType()) ||
(AE_NT_VX_PARAMETER != rExpr->GetNodeType()))
{

if ((AE_NT_VX_COLUMN == rExpr->GetNodeType())
&&
(AE_NT_VX_PARAMETER == lExpr->GetNodeType()))
{

// Swap the pointers, so the
expressions are always in the form
of
// <column_reference> <compOp>
<parameter>.
std::swap(lExpr, rExpr);
compOp = SLFilterHelper::FlipCompOp
(compOp);
}
else
{
// Not a parameter. Try the regular
simple passdown operations.
return
DSIExtSimpleBooleanExprHandler::Pass
downComparison(in_node);
}

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
187

Simba SQLEngine

http://www.magnitude.com/

}
// Get the column reference information.
DSIExtColumnRef colRef;
if (!GetTableColRef(lExpr, colRef) || 1 < m_
paramSetCount)
{
// Column not found or too many parameter
sets.
// The value of parameter nodes cannot be
inspected if the parameter set count is
greater than 1.
// (See DSIExtOperationHandlerFactory for
more information)
return false;
}
simba_wstring paramValue = GetParameterValue
(rExpr->GetAsParameter());
if (paramValue.IsNull())
{
// Can't handle NULL parameters.
return false;
}
simba_wstring columnName = m_table-
>GetQueryColumnName(colRef.m_colIndex);
SLFilterHelper::PrepareCompFilter(
m_tableName,
columnName,
*rExpr->GetMetadata(),
paramValue,
compOp,
m_filters);

return true;

}

If the filter was successfully applied, this method signals to the Simba SQLEngine that
a result can be obtained. TakeResult()is invoked. Internally the class’s
TakeResult()method looks at the m_filters field which was set by calling
SLFilterHelper::PrepareCompFilter() near the bottom of the
PassdownComparison()method and uses that to determine whether to return null
or a result set:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
188

Simba SQLEngine

http://www.magnitude.com/

SharedPtr<DSIExtResultSet> SLFilterHandler::TakeResult()
{

if (!m_filters.empty())
{

// Return filter result.
simba_wstring filterString =
SLFilterHelper::CreateFilterString(m_
filters);
// Creating the new query.
simba_wstring newQuery = "SELECT * FROM " +
m_table->GetQueryDefinition() + " WHERE " +
filterString;
return SharedPtr<DSIExtResultSet>(new
SLPassdownResultTable(

m_table,
newQuery.GetAsUTF8(),
AutoPtr<SLResultSetColumns>(m_table-
>GetSelectColumnsClone()), m_log));

}
// Return NULL and let the engine do the filtering.
return SharedPtr<DSIExtResultSet>();

}

If a result set can be returned, the filter constructed in the PassdownComparison()
method is passed to the constructor of the SLPassdownResultTable class which
uses it to build the result set to be returned. The SLFilterHandler class is a
specialized result set class for filtered results.

The CBFilterHandler class also implements CanHandleMoreClauses() which
always returns true to indicate to the Simba SQLEngine that all filter clauses will
always be handled.

bool SLFilterHandler::CanHandleMoreClauses()
{

// Always returns true since any incrementally adding
more filter clauses is supported.
return true;

}

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
189

Simba SQLEngine

http://www.magnitude.com/

This method is useful for signaling to the Simba SQLEngine whether additional filters
should be passed down to the handler. For example, if your data source can only filter
on one column, then the Simba SQLEngine needs to know that no further filters should
be passed down because none of them would succeed. By returning false from this
method after handling the first column, the DSII can signal this to the Simba
SQLEngine.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
190

Simba SQLEngine

http://www.magnitude.com/

Join Example

Joins are handled in a similar manner to that of Filters. Consider a typical join query
such as the following:

SELECT EMPLOYEE.first_name from EMPLOYEE INNER JOIN DEPT ON
EMPLOYEE.DEPT = DEPT.DEPT_ID

Before the pass-down optimization step, the AETree looks like this:

AEQuery

AEProject

AEJoin: AE_INNER_JOIN

AETable: DBF.DBF.EMPLOYEE
AETable: DBF.DBF.DEPT
AEComparison: EQ

AEValueList

AEColumn:
DBF.DBF.EMPLOYEE.DEP
T

AEValueList

AEColumn:
DBF.DBF.DEPT.DEPT_ID

AEValueList

AEColumn: DBF.DBF.EMPLOYEE.FIRST_
NAME

In SQLite, the SLJoinHandler class handles the passdown. After passing this tree
down to SLJoinHandler, the AE Tree now looks as follows:

AEQuery

AEProject

AESelect

AETable: CBJoinResult(EMPLOYEE,
DEPT)

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
191

Simba SQLEngine

http://www.magnitude.com/

AEComparison: EQ

AEValueList

AEColumn:
SLPassdownJoinResult
Table(EMPLOYEE,
DEPT).DEPT

AEValueList

AEColumn:
SLPassdownJoinResult
Table(EMPLOYEE,
DEPT).DEPT_ID

AEValueList

AEColumn: SLPassdownJoinResultTable
(EMPLOYEE, DEPT).FIRST_NAME

SQLite’s SLPassdownJoinResultTable class has handled the join condition
(EMPLOYEE.DEPT = DEPT.DEPT_ID) and returned a
SLPassdownJoinResultTable to the SQLEngine representing that joined result
set. The SLPassdownJoinResultTable AETable node represents this as can be
seen in the above AE Tree. When the DSII fully handles the join condition, the
SQLEngine uses the returned result to do the join and discards the AEJoin node. As
noted above, can’t fully handle the join condition so the SQLEngine works in
collaboration with it to properly join the results. This can be seen in the first AE Tree
where there is now an AESelect instead of an AEJoin node.

Through CQE with SLFilterHandler, the SQL Engine has performed the following
steps to accomplish this:

1. Attempt to pass-down the entire join condition for the AEJoin node.
2. Is passing down the condition successful (Passdown() returned true)?

A. Yes, Passdown() returned true. Call TakeResult() and substitute the
returned result in for the AEJoin node.

B. No, Passdown() returned false. Is there only one CNF clause? (see
below for more information on this step).
a. Yes, only one clause. Is there a result returned from TakeResult

()?

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
192

Simba SQLEngine

http://www.magnitude.com/

i. Yes, a result is returned. Create an AESelect node with the
same filter condition as the AEJoin join condition, and use the
returned result as the operand for the AESelect node. Replace
the AEJoin with the AESelect node.

ii. No, no result is returned. Leave the AETree as is.
b. No, more than one clause. Attempt to pass-down each CNF clause

one-by-one. For each CNF clause passed down, is passing down the
clause successful?

i. Yes, Passdown() returned true. Record the clause and
continue to the next clause. If no more clauses, go to step iii.

ii. No, Passdown() returned false. Attempt to break clause down
according to step ii and pass-down, then continue to the next
clause. If no more clauses, go to Step iii.

iii. Create an AESelect node with the same filter condition as the
AEJoin join condition, and use the returned result as the
operand for the AESelect node. Replace the AEJoin with the
AESelect node. Remove any clauses that were recorded in
Step 1 from the AESelect condition.

Note:

If a join is to be applied where one of the join operands had an operation which
could not be handled via CQE by the DSII, then the filter will not be passed to
the DSII. This is because if the DSII could not handle the operation that would
result in the result set to be filtered, then it would not be possible for it to then
apply a further filter on that result set. For example, take the following example
query:

SELECT * FROM (SELECT * FROM EMPLOYEEWHERE NUM_SALARY >
10000) t1 INNER JOIN DEPT ON t1.DEPT = DEPT.DEPT_ID

If the DSII can’t apply the filter “NUM_SALARY > 10000″ then it would also not
be able to apply the join condition “t1.DEPT = DEPT.DEPT_ID”, as that
condition would need to be applied to the result of “SELECT* from EMPLOYEE
WHERE NUM_SALARY > 10000″ and the DEPT table.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
193

Simba SQLEngine

http://www.magnitude.com/

Implementation

The SLJoinHandler’s constructor is provided with the left and right tables for which
the join pass down operation will attempt to run the filter on. References are stored for
each, as well as for the connector settings:

SLJoinHandler::SLJoinHandler(SharedPtr<SLTableBase> in_
tableLeft,SharedPtr<SLTableBase> in_tableRight,AEJoinType in_
joinType,ILogger& in_log)

:
m_tableLeft(in_tableLeft),
m_tableRight(in_tableRight),
m_joinType(in_joinType),
m_log(in_log)
{

assert(!in_tableLeft.IsNull());
assert(!in_tableRight.IsNull());
assert(m_joinType != AE_RIGHT_OUTER_JOIN);
m_leftTable->GetTableName(m_leftTableName);
m_rightTable->GetTableName(m_rightTableName);

}

Like SLFilterHandler’s, SLJoinHandler class does not directly implement
Passdown() but implements other Passdown()methods which are delegated
(invoked) by the base class to handle various join comparisons. Of particular interest is
the PassdownSimpleComparision()method which hosts similar logic to that of
SLFilterHandler::PassdownComparision(). The following is code snippet
shows the various checks the method makes, such as whether pass down is enabled
and whether the order of tables matches those in the join handler:

bool SLJoinHandler::PassdownSimpleComparison(DSIExtColumnRef&
in_leftExpr,LiteralValue in_rightExpr,SEComparisonType in_
compOp)
{

// Column reference may come from left or right
table.
if (SLFilterHelper::PrepareCompPassdown(m_leftTable,
in_leftExpr, in_rightExpr, in_compOp, m_filters) ||

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
194

Simba SQLEngine

http://www.magnitude.com/

SLFilterHelper::PrepareCompPassdown(m_rightTable, in_
leftExpr, in_rightExpr, in_compOp, m_filters))
{

{
return true;
}
return false;
}

bool SLJoinHandler::PassdownSimpleComparison(DSIExtColumnRef&
in_leftExpr,DSIExtColumnRef& in_rightExpr,SEComparisonType
in_compOp)
{

if (SLFilterHelper::PrepareCompPassdown(in_leftExpr,
in_rightExpr, in_compOp, m_filters))
{
return true;
}
return false;

}

bool SLFilterHelper::PrepareCompPassdown(
const SharedPtr<SLTableBase>& in_table,
const DSIExtColumnRef& in_column,
const Simba::SQLEngine::LiteralValue& in_rightExpr,
const SEComparisonType& in_compOp,std::vector<simba_wstring>&
io_filters)
{

assert(in_rightExpr.first);
assert(!in_column.m_table.IsNull());
if (in_table->IsReadOnlyTable())
{

const simba_wstring& tableName = in_table-
>GetQueryReference();
const simba_wstring& columnName = in_table
->GetQueryColumnName(in_column.m_colIndex);

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
195

Simba SQLEngine

http://www.magnitude.com/

const simba_wstring& literalVal =
GetLiteralValue(in_rightExpr);
// Construct the filter string for input to
SQLite.
PrepareCompFilter(

tableName,
columnName,
*in_rightExpr.first->GetMetadata(),
literalVal,
in_compOp,
io_filters);

return true;

}
return false;

}

bool SLFilterHelper::PrepareCompPassdown(
DSIExtColumnRef& in_leftColumn,
DSIExtColumnRef& in_rightColumn,
const SEComparisonType& in_compOp,
std::vector<simba_wstring>& io_filters)
{

assert(!in_leftColumn.m_table.IsNull());
assert(!in_rightColumn.m_table.IsNull());
SEComparisonType compOp = in_compOp;
const simba_wstring& leftTableName = static_
cast<SLTable*>(in_leftColumn.m_table.Get())
->GetQueryReference();
const simba_wstring& rightTableName = static_
cast<SLTable*>(in_rightColumn.m_table.Get())
->GetQueryReference();
const simba_wstring& leftColumnName = static_
cast<SLTable*>(in_leftColumn.m_table.Get
())>GetQueryColumnName(in_leftColumn.m_colIndex);
const simba_wstring& rightColumnName = static_
cast<SLTable*>(in_rightColumn.m_table.Get())
->GetQueryColumnName(in_rightColumn.m_colIndex);

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
196

Simba SQLEngine

http://www.magnitude.com/

}
PrepareCompFilter(

leftTableName,
leftColumnName,
rightTableName,
rightColumnName,
compOp,
io_filters);

return true;

}

If the filter was successfully applied, this method signals to the Simba SQLEngine that
a result can be obtained in which TakeResult()will be invoked. Internally the class’s
TakeResult()method checks whether the join type is supported by SQLite (SQLite
does not support the RIGHT JOIN clause and also the FULL OUTER JOIN clause)
and uses that to determine whether to return null or a result set:

SharedPtr<DSIExtResultSet> SLJoinHandler::TakeResult()
{

// SQLite only directly supports cross, inner, left
outer joins. Right outer join is emulated using a
left outer join.
// The "JOIN" operator produces the same result as
"CROSS JOIN" and "INNER JOIN" in SQLite.

if (AE_INNER_JOIN == m_joinType || AE_LEFT_OUTER_JOIN
== m_joinType)
{

AutoPtr<SLResultSetColumns> resultSetColumns
(new SLResultSetColumns);
PreparePassdownResultSetColumns
(*resultSetColumns, m_actualJoinType);
simba_wstring joinString = AE_INNER_JOIN ==
m_joinType ? "JOIN" : "LEFT OUTER JOIN";
simba_wstring filterString =
SLFilterHelper::CreateFilterString(m_
filters);

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
197

Simba SQLEngine

http://www.magnitude.com/

// Creating the new query.
simba_wstring leftTableQuery = m_leftTable-
>GetQueryDefinition();
simba_wstring rightTableQuery = m_rightTable-
>GetQueryDefinition();
simba_wstring newQuery = L"SELECT " + m_cols
+ " FROM " + leftTableQuery + " " +
joinString + " " + rightTableQuery;
simba_string tets = m_cols.GetAsUTF8();
simba_string test = newQuery.GetAsUTF8(); //
used for testing
if (!filterString.IsNull())
{

newQuery += L" ON " + filterString;

}
SLTableIdentifier joinResultIdentifier(
m_leftTable->GetTableIdentifier().GetCatalog
(),
m_leftTable->GetTableIdentifier().GetSchema
(),
m_leftTableName + "_JOINED_WITH_" + m_
rightTableName);
return SharedPtr<DSIExtResultSet>(

new SLPassdownJoinResultTable(

m_leftTable,
m_rightTable,
newQuery.GetAsUTF8(),
joinResultIdentifier,
resultSetColumns,
m_log));

}
// Return null and let the engine do the join.
return SharedPtr<DSIExtResultSet>();

}

If a result set can be returned, the filter constructed in
thePassdownSimpleComparison()method is passed to the constructor of the
SLPassdownJoinResultTable class which uses it to build the result set to be

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
198

Simba SQLEngine

http://www.magnitude.com/

returned. The SLPassdownJoinResultTable class is a specialized result set class
for filtered results.

The SLJoinHandler class also implements CanHandleMoreClauses() which
always returns true to indicate to the Simba SQLEngine that all filter clauses will
always be handled.

bool SLJoinHandler::CanHandleMoreClauses()
{

// Always returns true since any incrementally adding
more filter clauses is supported.
return true;

}

Aggregation Handlers

Passed down aggregations are handled by classes which implement
IAggregationHandler. This interface defines one passdown function that accepts
an AEAggregate node. If the aggregation can be handled, the passdown function
must return a new result set that will represent the aggregation of the base result. If the
aggregation cannot be handled, the passdown function must return null and the Simba
SQLEngine will handle the aggregation.

To simplify analysis of the AEAggregate node, two abstract subclasses are defined.
DSIExtAbstractAggregationHandler divides the AEAggregate into
passdowns for the individual aggregations needed and the individual groupings to use
for the aggregations. If each aggregation and grouping passed down is accepted by
returning true, a method called CreateResult will be invoked to create the aggregation
result that will replace the AEAggregate node in the AE-Tree. If any aggregation
function or grouping passed down is rejected by returning false, the entire aggregate
passdown will be abandoned and CreateResult will not be invoked.

Note:

Despite having a different name, the invocation of CreateResult and the
operation performed by this method is similar to that of the TakeResult
method of the other handlers.

The DSIExtSimpleAggregationHandler class derives further from
DSIExtAbstractAggregationHandler to identify and pass down several simple
cases that are easier to handle. It only passes down aggregations of literals or column
references and only passes down groupings of column references. If the aggregation

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
199

Simba SQLEngine

http://www.magnitude.com/

or grouping contains any more complex value expressions then the passdown will be
rejected.

Unlike filter and join handlers, the columns in the generated result set do not match
columns in the base tables directly. Instead, one column must be created for each
aggregate function or grouping expression passed down. The order of the columns
must match the order that the pass down functions are called in. That is, if
SetGroupingExpr is called twice followed by SetAggregateFn once, the generated
result set must contain exactly three columns; the first two being columns for the
grouping values, the third being the aggregated result values.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
200

Simba SQLEngine

http://www.magnitude.com/

Aggregation Example

Consider a typical query involving an aggregation:
SELECT COUNT(*) from EMPLOYEE

Before the pass-down optimization step the AETree looks like this:

AEQuery

AEProject

AEAggregate

AETable: DBF.DBF.EMPLOYEE
AEValueList

AECountStarAggrFunction

AEValueList

AERename: EXPR_1

AEProxyColumn: AEAggregate -
column #0

In SQLite, the SLAggregationHandler class handles the pass down. After passing
this tree down to SLAggregationHandler, the AETree looks as follows:

AEQuery

AEProject

AETable: DBF.DBF.EMPLOYEE
AEValueList

AERename: EXPR_1

AEProxyColumn:
DBF.DBF.EMPLOYEE1.

has handled the aggregation (COUNT(*)) in the DSII and returned a SLTableBase
representing the aggregation to the Simba SQLEngine. The AETable node for the
EMPLOYEE node represents this. To verify this, you can place a breakpoint in
SLTableBase::GetTableName(), which is a method to alter the returned table
name, and view the value of out_tableName. The Simba SQLEngine uses this result
returned from the DSII, and discards the AEAggregate node that was previously used.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
201

Simba SQLEngine

http://www.magnitude.com/

The Simba SQLEngine attempts to pass-down the entire aggregation, which can
contain one or more aggregate functions. If at least one of the aggregate functions
can’t be handled, then the pass-down is aborted and the Simba SQLEngine will handle
the aggregation. The Simba SQLEngine does not allow partial aggregations.

Note:

A CQE aggregation can’t be applied to the result of a sub-section of the
AETree if that section had an operation which could not be handled via CQE,
instead the Simba SQLEngine will handle it. This is because if the DSII could
not handle the operation to cause the result set to be filtered, then it would not
be possible for it to apply a further aggregation on a result it could not compute.

If there are no columns in the GROUP BY clause, then the result should only have a
single row. Otherwise, there should be one row for each group specified by the set of
columns in the GROUP BY clause. For example, the following query:
SELECT C1, COUNT(*) FROM T1 GROUP BY C1

would result in two columns, one for C1 and one for COUNT(*), and should return a
row for every different value of C1. In otherwords, if table T1 contained the following
columns and rows:

C1 C2
A B
A D
B E

then the result returned from the query should look like the following:

C1 count (*)
A 2
B 1

If a query containing an aggregation is in a complicated form, the SQL Engine will
transform it into a “standard” form. For example, consider the following query:

SELECT C1 + AVG(C2) * COUNT(C3) FROM T1 GROUP BY C1

Simba SQLEngine will ensure that an IAggregationHandler object only needs to deal
with a query that resembles this:

SELECT C1, AVG(C2), COUNT(C3) FROM T2 GROUP BY C1

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
202

Simba SQLEngine

http://www.magnitude.com/

Implementation

The SLAggregationHandler’s constructor is provided with the table on which to
perform the aggregation on, along with connector configuration settings. The
constructor stores references to each and also initializes a Boolean member called
passdownSupported which will be used later on to determine if a result should be
returned:

SLAggregationHandler::SLAggregationHandler(

SharedPtr<SLTableBase> in_table,
ILogger& in_log,
IStatement& in_statement) :
m_table(in_table),
m_passdownSupported(true),
m_log(in_log),
m_statement(in_statement)

{

assert(!in_table.IsNull());
m_table->GetTableName(m_tableName);

}

SLAggregationHandler’s does not implement Passdown because this has been
done in a base class. Instead, a number of Set()*methods have been defined in the
base class which are called by Passdown to provide the handler with information
about the specific aggregation that has been encountered in the query. Each method
can then return true or false to specify if that aggregation can be handled. For
example, SLAggregationHandler::SetAggregateFn, shown below, first it
checks if the given aggregate function is a COUNT(*) (since COUNT(*) is the only
aggregate function supported by our SQLite sample), and if it's not a COUNT(*), then
set m_passdownSupported to false and let SQLEngine handle it:

bool SLAggregationHandler::SetAggregateFn(SEAggrFunctionID
in_aggrFnID)
{

// COUNT(*) is supported.
if (SE_FUNCT_COUNT_STAR == in_aggrFnID)
{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
203

Simba SQLEngine

http://www.magnitude.com/

/SLAggrInfo aggrInfo = {

COUNT_STAR, -1, false };
m_aggrFunctionList.push_back
(aggrInfo);
return true;

}

}
m_passdownSupported = false;
return false;

}

Projection Handlers

Projection handling provides a DSII with the opportunity to handle the selection of
individual columns. Passed down projections are handled by classes which implement
IProjectionHandler. This interface defines one passdown method that accepts
an AEProject node. If the projection can be handled, the handler must return a new
result set that represents the projection of the base result.

Typically you will subclass the DSIExtAbstractProjectionHandler, which
provides support for the projections of columns, but does not handle projections of
complex elements such as scalar functions. If you need more functionality then you
should override other functions in the parent classes as needed, or subclass.

Note:

The handling of columns is considered the minimal support necessary to
implement projection handling.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
204

Simba SQLEngine

http://www.magnitude.com/

Projection Example

Consider the following example query being handled by and example connector:

SELECT FIRST_NAME, LAST_NAME, EMP_ID, DATE_HIRE, NU_SALARY, DEPT,
INTERESTS FROM EMP

Prior to passdown, the AE Tree for this query is as follows:

AEQuery

AEProject

AETable: DBF.DBF.EMP
AEValueList

AEColumn: DBF.DBF.EMP.FIRST_NAME
AEColumn: DBF.DBF.EMP.LAST_NAME
AEColumn: DBF.DBF.EMP.EMP_ID
AEColumn: DBF.DBF.EMP.DATE_HIRE
AEColumn: DBF.DBF.EMP.NUM_SALARY
AEColumn: DBF.DBF.EMP.DEPT
AEColumn: DBF.DBF.EMP.INTERESTS

Simba SQLEngine reduces the tree to:

AEQuery

AETable: DBF.DBF.PASSDOWN_EMP

In the SQLite sample, projection handling is performed by SLProjectionHandler
which subclasses DSIExtAbstractProjectionHandler. In the example above,
SLProjectionHandler handled the projection in the DSII and returned a result set
which consists of a new table (PASSDOWN_EMP) containing only the columns being
projected. The projection node was then replaced by the result table node since the
query was passed down entirely (i.e fully handled by the DSII).

The sample connector only handles simple projection items (i.e. columns), but not
complex ones such as scalar functions. The Simba SQLEngine however, assumes
that a DSII can handle both simple columns and complex projection columns.

Consider a query like the one shown in the following example which is handled by a
connector that supports projection handling of simple columns and the substring
scalar function, but not other scalar functions:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
205

Simba SQLEngine

http://www.magnitude.com/

SELECT FIRST_NAME, SUBSTRING(LAST_NAME, 0, 3), DEPT, ABS(NUM_
SALARY) FROM EMP

Prior to pass down, the AE Tree would look as follows:

AEQuery

AEProject

AETable: DBF.DBF.EMP
AEValueList

AEColumn: DBF.DBF.EMP.FIRST_NAME
AERename: EXPR_1

AEScalarFn: substring

AEValueList

AEColumn:
DBF.DBF.EMP
.LAST_NAME
AELiteral:
0; Unsigned
Integer
Literal
AELiteral:
3; Unsigned
Integer
Literal

AEColumn: DBF.DBF.EMP.DEPT
AERename: EXPR_2

AEScalarFn: abs

AEValueList

AEColumn:
DBF.DBF.EMP
.NUM_SALARY

After pass down, the partially handled AE tree would look as follows:

AEQuery

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
206

Simba SQLEngine

http://www.magnitude.com/

AEProject

AETable: DBF.DBF.PASSDOWN_EMP
AEValueList

AEColumn: DBF.DBF.PASSDOWN_
EMP.FIRST_NAME
AEColumn: DBF.DBF.PASSDOWN_EMP.EXPR_
1
AEColumn: DBF.DBF.PASSDOWN_EMP.DEPT
AERename: EXPR_2

AEScalarFn: abs
AEValueList

AEColumn: DBF.DBF.PASSDOWN_
EMP.NUM_SALARY

In this case, the connector was able to handle the columns (first_name, last_name,
dept and num_salary), and the substring scalar function. Since it was not able to
handle the abs function, the “abs(num_salary)” column was partially passed down: the
“num-salary” column was passed down but “abs(num_salary)” was not. Therefore, in
this case the columns in PASSDOWN_EMP table are:“first_name”, “dept”, “substring
(last_name, 0, 3)”, “num_salary”.

The DSII returns the result table (PASSDOWN_EMP) and the Simba SQLEngine
updates the AEColumn nodes in the tree to reflect this. The engine would also handle
the projection expressions not being passed down.

Through CQE with the SLProjectionHandler, the Simba SQLEngine has performed the
following steps during the passdown of a projection:

1. Attempt to pass down all columns/expressions in projection list one by one. Can
the current projection item be passed down?
A. Yes. Go to step 1.c.
B. No. Walk through the sub-tree rooting from the current item and look for

columns. If there are any column references, pass them. Go to step 1.C.
C. Is the current item the last one in the projection list?

i. Yes. Go to step 2.
ii. No. Go to the next item. Go to step 1.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
207

Simba SQLEngine

http://www.magnitude.com/

2. Take the passdown result from the DSII. Is the result null?
A. Yes (the DSII is not able to handle the projection, so no passing down

occurred). Leave the projection node as intact and the engine will handle it.
Go to End.

B. No (the DSII is able to handle the projection, either entirely or partially, so
passing down occurred). Were all items in projection list passed down
successfully?

i. Yes (entirely passed down). Replace the projection node with the
result table node. The engine will just use the table node and discard
the projection node. Go to End.

ii. No (partially passed down). Update the projection node to have all
projection items reference the new table as the old table will be
discard. The engine will handle the updated projection node (take
care of all the projection expressions that couldn't be passed down).

Note:

It is important to be aware of how projection handling works when
implementing other types of operation handlers, because projections are a
common pattern and are often passed down before other pass down operation
handlers are invoked. Generally, supported handlers for Distinct, Sort, Top,
and Union would happen ‘after’ projection, while handlers for Join, Filter, and
Aggregation would happen before, though this can change when subqueries
are present.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
208

Simba SQLEngine

http://www.magnitude.com/

Implementation

The sample’s SLOperationHandlerFactory class is responsible for the
construction of all pass down handlers. Its CreateProjectionHandlermethod
creates the XMProjectionHandler object passing in the table associated with the
projection query. The constructor also initializes a SharedColumns object which the
handler will populate with column metadata during the passdown operation:

SLProjectionHandler::SLProjectionHandler
(SharedPtr<SLTableBase> in_table,ILogger& in_log) :

;m_table(in_table),
m_log(in_log),
m_metadata(new SLResultSetColumns()),
m_passdown(false)

{
}

SLProjectionHandler does not directly implement Passdown as this has been
implemented in its parent class. Instead it implements various Passdown “sub”
methods which the parent class delegates (invokes). Most notably is the
SLProjectionHandler::PassdownColumn()method (shown below) which
handles the pass down of a column and will be invoked by the Simba SQLEngine for
each column in the projection:

void SLProjectionHandler::PassdownColumn(AEColumn* in_node,
const simba_wstring* in_name)
{

assert(!m_table.IsNull());
assert(in_node);
m_table->GetTableName(m_tableName);
AddColumn(in_node, in_name);
m_passdown = true;

}

//

void SLProjectionHandler::AddColumn(const AEColumn* in_node,
const simba_wstring* in_name)
{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
209

Simba SQLEngine

http://www.magnitude.com/

DSIExtColumnRef colRef;
GetTableColRef(in_node, colRef);
simba_wstring tableName;
simba_wstring colOriginal;
simba_wstring colAlias;
simba_uint16 colIndex = colRef.m_colIndex;
GetColumn(colRef)->GetName(colOriginal);
tableName = m_table->GetQueryReference();
colAlias = m_table->GetQueryColumnName(colIndex);
simba_string testTableName = tableName.GetAsUTF8();
simba_string testColOriginal = colOriginal.GetAsUTF8
();
simba_string testColAlias = colAlias.GetAsUTF8();
simba_wstring colName;
if (!colOriginal.IsEmpty())
{

colName = tableName + "." +
SLPassdownUtilities::QuoteAndEscapeQuotes
(colAlias, SL_DOUBLEQUOTE);AddColumnName
(colName);

}
// Record the column metadata.
AutoPtr<SqlTypeMetadata> metadata(in_node-
>GetMetadata()->Clone());
AutoPtr<DSIColumnMetadata> dsiColumnMetadata(new
DSIColumnMetadata(in_node->GetColumnMetadata()));
if (in_name)
{

dsiColumnMetadata->m_name = *in_name;
dsiColumnMetadata->m_label = *in_name;
dsiColumnMetadata->m_unnamed = false;

}
m_metadata->AddColumn(new SLResultSetColumn(metadata,
dsiColumnMetadata, colAlias));

}
///
//////////////////////////////////void

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
210

Simba SQLEngine

http://www.magnitude.com/

SLProjectionHandler::AddColumnName(const simba_wstring& in_
colName)
{

if (m_cols.IsEmpty())
{

im_cols = in_colName;

}
else
{

m_cols = m_cols + L", " + in_colName;

}

}

This method uses the AEColumn object passed in to obtain and store metadata about
the projection column of interest. The method also takes in the column alias, and uses
that to reference the column in the metadata, if the alias exists. Each time this method
is invoked, the column metadata is added to the m_metadata member. This collection
of metadata is used later in the TakeResultmethod (described next) to build the
result set that is to be returned to the Simba SQLEngine.

Note that since columns are the minimally supported projection entity which must be
supported by a projection handler, PassdownColumn must be implemented. Also note
that this method does not return a value, because it is assumed that the pass down is
not only supported by the DSII but will also succeed when provided with a projection
column.

After PassdownColumn has been invoked for each column, the Simba SQLEngine
then invokes SLProjectionHandler::TakeResult once, to obtain a result set
consisting of all projected columns:

SharedPtr<Simba::SQLEngine::DSIExtResultSet>
SLProjectionHandler::TakeResult()
{

if (m_passdown)
{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
211

Simba SQLEngine

http://www.magnitude.com/

simba_wstring newQuery = "SELECT " + m_cols +
" FROM " + m_table->GetQueryDefinition();
// Getting projected column metadata.
AutoPtr<SLResultSetColumns> colMetadata(m_
metadata.Detach());
return SharedPtr<DSIExtResultSet>(new
SLPassdownResultTable(

m_table,
newQuery.GetAsUTF8(),
colMetadata,
m_log));

}
return SharedPtr<DSIExtResultSet>();

}

This method takes the collection of column metadata (m_metadata) and the name of
all projection columns (m_cols), and uses them to construct a result set.

Union Handlers

Union handling provides a DSII with the opportunity to handle the union of columns
from two or more tables. The Simba SQLEngine passes down the AE Tree node for
the union expression. This node is handled by classes which implement
IUnionHandler. This interface defines one Passdown method that accepts an
AEUnion node and must return a new result set containing the result of the whole
union.

Note:

Unlike most other pass down handlers, there are no abstract union handlers to
subclass so a union handler must directly implement IUnionHandler as has
been done in the sample connector.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
212

Simba SQLEngine

http://www.magnitude.com/

Union Example

Consider the following example query being handled by the sample connector:

select a.log_c, a.char_c from alltype1 a UNION ALL select b.log_c, b.char_c from
alltype2 b

Prior to pass down, the AE Tree looks as follows:

AEQuery
AEUnion
AEProject
AETable: a
AEValueList
AEColumn: a.LOG_C
AEColumn: a.CHAR_C
AEProject
AETable: b
AEValueList
AEColumn: b.LOG_C
AEColumn: b.CHAR_C

After pass down, the Simba SQLEngine has optimized the AE Tree as follows:

AEQuery

AETable: PASSDOWN_a

In the sample connector, union handling is performed by SLUnionHandler which
implements SLUnionHandler. For the example above, the operations on both sides
of the union were first passed down to the sample connector and handled using the
connector’s projection handler. The Simba SQLEngine then passed down the node
representing the union operation which contains the projection tables in subnodes to
SLUnionHandler. SLUnionHandler then generated and returned a result set
containing the row data for the columns of the union. Note that implementing a union
handler requires that a projection handler also be implemented. This is because there
are always AEProject nodes under an AEUnion node, so if the connector doesn't
handle the projections, then the Union will not be passed down.

Through CQE with the SLUnionHandler, the Simba SQLEngine has performed the
following steps to accomplish this:

1. Check both operations preceeding the union operation. Were both of them
passed down successfully (already table objects)?

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
213

Simba SQLEngine

http://www.magnitude.com/

A. Yes. Attempt to pass down the union operation to the DSII. Go to Step 2.
B. No. Unable to pass down union operation. Go to End.

2. Is passing down union successful?
A. Yes. Take the result table from the DSII and replace the union node with

the new table node. The engine will use the table node and discard the
union node. Go to End.

B. No. Leave the union node as intact and the engine will handle it. Go to End.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
214

Simba SQLEngine

http://www.magnitude.com/

Implementation

The sample’s SLOperationHandlerFactory class is responsible for the
construction of all pass down handlers. Its CreateUnionHandlermethod creates
the SLUnionHandler object. The tables to perform the union on will be provided
during pass down, so the object’s constructor does not take in a table like other pass
down handlers do:

SLUnionHandler::SLUnionHandler(

ILogger& in_log):
m_log(in_log)

{

// Do nothing.

}

SLUnionHandler’s Passdown method handles the pass down of a union operation:

SharedPtr<DSIExtResultSet> SLUnionHandler::Passdown(AEUnion*
in_node)
{

SharedPtr<DSIExtResultSet> leftTable = in_node-
>GetLeftOperand()->GetAsTable()->GetTable();
SharedPtr<DSIExtResultSet> rightTable = in_node-
>GetRightOperand()->GetAsTable()->GetTable();

assert(!leftTable.IsNull());
assert(!rightTable.IsNull());
SLTableBase* firstTable = static_
cast<SLTableBase*>(leftTable.Get());
SLTableBase* secondTable = static_
cast<SLTableBase*>(rightTable.Get());
simba_wstring firstQuery = L"SELECT * FROM "
+ firstTable->GetQueryDefinition();
simba_wstring secondQuery = L"SELECT * FROM "
+ secondTable->GetQueryDefinition();
simba_wstring passDownQuery = firstQuery + L"
UNION ";
if (in_node->IsAllOptPresent())

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
215

Simba SQLEngine

http://www.magnitude.com/

{

passDownQuery += L"ALL ";

}
passDownQuery += secondQuery;
SLTableIdentifier unionResultIdentifier(

firstTable->GetTableIdentifier
().GetCatalog(),
secondTable->GetTableIdentifier
().GetSchema(),
firstTable->GetTableName() + L"_
UNION_WITH_" + secondTable-
>GetTableName());

return SharedPtr<DSIExtResultSet>(new
SLTableBase(

firstTable->GetDatabase(),
passDownQuery.GetAsUTF8(),
unionResultIdentifier,
m_log,
false,
false,
firstTable->GetDataEngine(),
firstTable->GetConnection(),
NULL));

}

The method begins by creating a “select * from table” query for each of the two tables
for union operation (e.g. “tableA UNION tableB” => “select * from tableA UNION select
* from tableB”). When constructing the new query, it also checks if the keyword ALL is
present. Then the new query is used to create the result set to be returned. And the
new table (the result of the union operation) is returned to Simba SQLEngine with the
new name “tableA _UNION_WITH_tableB”.

Note:

IUnionHandler will support both UNION and UNION ALL, so implementing
this interface in your own connector will allow you to support both statements.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
216

Simba SQLEngine

http://www.magnitude.com/

If the option was specified, then the pass down handler obtains the left and right tables
from the union and proceeds to perform the union operation by iterating through all the
row data for the columns specified in the union. This data is combined into a new result
set and then returned to the Simba SQLEngine. Note that this example is mainly for
demonstration purposes to show how a union can be handled, and does not provide
any significant increase in performance.

Distinct Handlers

Distinct handling provides a DSII with the opportunity to handle the selection of distinct
row data for columns of a single table. The Simba SQLEngine passes down the AE
Tree node for the distinct expression which contains subnodes for the tables involved
in the union. This node is handled by classes which implement IDistinctHandler.
This interface defines one Passdown method that accepts an AEDistinct node and
must return a new result set containing the result of the distinct operation. Note that
implementing a distinct handler requires that a projection handler also be
implemented. This is because there is always an AEProject node under an AEDistinct
node, so if the connector doesn't handle the projection, then the distinct will not be
passed down.

Note:

Unlike most other pass down handlers, there are no abstract distinct handlers
to subclass so a distinct handler must directly implement IDistinctHandler as
has been done in the sample connector.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
217

Simba SQLEngine

http://www.magnitude.com/

Distinct Example

Consider the following example query being handled by a connector:
SELECT DISTINCT FIRST_NAME FROM EMP

Prior to pass down, the AE Tree looks as follows:

AEQuery

AEDistinct

AEProject

AETable: DBF.DBF.EMP

AEValueList

AEColumn: DBF.DBF.EMP.FIRST_
NAME

After pass down, the Simba SQLEngine has optimized the AE Tree as follows:

AEQuery
AETable: DBF.DBF.PASSDOWN_EMP

In the connector above, distinct handling is performed by SLDistinctHandler
which implements IDistinctHandler. For the example above, the select statement
is first passed down to the sample connector and handled using the connector’s
projection handler. The Simba SQLEngine then passed down the node representing
the distinct operation which contains the projection table in a subnode to
SLDistinctHandler. SLDistinctHandlerthen generated and returned a result
set containing the columns and rows for the distinct statement.

Through CQE with the SLDistinctHandler, the Simba SQLEngine has performed
the following steps to accomplish this:

1. Attempt to pass down the top operation. Is passing down top successful?
a. Yes. Take the result table from the DSII and replace the top node with the

new table node. The engine will use the table node and discard the top
node. Go to End.

b. No. Leave the distinct operation and distinct node as intact and the engine
will handle it. Go to End.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
218

Simba SQLEngine

http://www.magnitude.com/

Implementation

The sample’s SLOperationHandlerFactory class is responsible for the
construction of all pass down handlers. Its CreateDistinctHandlermethod
creates the SLDistinctHandler object. The table to perform the distinct selection
on will be provided during pass down, so the object’s constructor does not take in a
table like other passdown handlers do:

SLDistinctHandler::SLDistinctHandler(ILogger& in_log) :
m_log(in_log)
{

// Do nothing.

}

SLDistinctHandler’sPassdown()method handles the pass down of the distinct
operation:

SharedPtr<DSIExtResultSet> SLDistinctHandler::Passdown
(AEDistinct* in_node)
{

assert(in_node);
SLTableBase* originalTable = static_
cast<SLTableBase*>(
in_node->GetOperand()->GetAsTable()->GetTable().Get
());
m_table.Reset(originalTable);
simba_wstring newQuery = "SELECT DISTINCT * FROM (" +
m_table->GetQueryDefinition() + ")";
return SharedPtr<DSIExtResultSet>(new
SLPassdownResultTable(

m_table,
newQuery.GetAsUTF8(),
AutoPtr<SLResultSetColumns>(m_table-
>GetSelectColumnsClone()),
m_log));

}

The method creates a new “select distinct * from inputTable” query and uses it to
construct a result set returned to Simba SQLEngine.

Sort Handlers

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
219

Simba SQLEngine

http://www.magnitude.com/

Sort handling provides a DSII with the opportunity to handle the sorting of data based
on the columns specified in an ORDER BY clause. Passed down sorts are handled by
classes which implement ISortHandler. This interface defines a Passdown method
that accepts an AESort node in which nodes for a projection are contained. If the sort
can be handled, the method must return the number of columns that it is able to sort.
The Simba SQLEngine will then invoke the class’s TakeResult method to obtain the
sorted result set. Note that implementing a sort handler requires that a projection
handler also be implemented. This is because there is always an AEProject node
under an AESort node, so if the connector doesn't handle the projection, then the sort
will not be passed down.

Consider the following example query being handled by the SQLite sample connector:

SELECT FIRST_NAME, NUM_SALARY FROM EMP ORDER BY NUM_SALARY

Prior to pass down, the AE Tree for this query is as follows:

AEQuery

AESort

AEProject

AETable: DBF.DBF.EMP
AEValueList

AEColumn: DBF.DBF.EMP.FIRST_
NAME
AEColumn: DBF.DBF.EMP.NUM_
SALARY

After pass down to the sort handler, the Simba SQLEngine reduces the tree to:

AEQuery

AETable: DBF.DBF.PASSDOWN_EMP

In the SQLite sample connector, sort handling is performed by SLSortHandler
which implements ISortHandler. In the example above, the sort handler handled
the projection in the DSII and returned a result set which consists of a new sorted table
(PASSDOWN_EMP). The AESort node was then replaced by the result table node
since the query was successfully passed down.

Note that the SQL Engine does not support partial pass downs for sort (i.e. the pass
down handler must handle (sort) on all columns). If the handler cannot fully handle the
sort, then the AE Tree in the example above, would not be altered.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
220

Simba SQLEngine

http://www.magnitude.com/

Note:

Currently the SDK only supports using the result of a full sort; partial sorts may
be supported in the future. Currently, if a handler signals to the Simba
SQLEngine that it will handle a partial sort, then the Simba SQLEngine will not
take the result, and handle the full sort itself instead.

Through CQE with the SLSortHandler, the Simba SQLEngine has performed the
following steps to accomplish this:

1. Attempt to pass down the sort operation. Is passing down sort successful
(Passdown() returns an integer greater than 0)? (Passdown() would return
the number of sort specifications being passed down)
A. Yes. Is the returned number equal to the total number of sort specifications

(entirely passed down) and is the sort order the same as the one in the
engine?

i. Yes. Go to End.
ii. No, sort was partially passed down (currently not supported by the

Simba SQLEngine). So though the DSII is able to help do part of the
work, the engine will still do all the work itself. Go to End.

2. No. Leave the sort node as intact and the engine will handle it. Go to End.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
221

Simba SQLEngine

http://www.magnitude.com/

Implementation

This section shows a sample implementation. In this example, the
SLOperationHandlerFactory class is responsible for the construction of all pass
down handlers and its CreateSortHandlermethod creates the SLSortHandler
object. Since the table to sort on will be provided to the Passdown method, the
constructor doesn't take the table as a parameter:

SLSortHandler::SLSortHandler(ILogger& in_log) :
m_log(in_log)
{

// Do nothing.

}

The Passdown method takes in an AESort node containing the projection to sort on,
as well as an enum specifying the order of sorting, if specified:

simba_uint16 SLSortHandler::Passdown(AESort* in_node,
SESortOrder& io_sortOrder)
{

assert(in_node);
SLTableBase* originalTable = static_
cast<SLTableBase*>(
in_node->GetOperand()->GetAsTable()->GetTable().Get
());
m_table.Reset(originalTable);
m_restrictedColCount = in_node->GetColumnCount();
const SESortSpecs* sortSpecs = in_node->GetSortSpecs
();
PrepareSort(sortSpecs);
io_sortOrder = NOT_ODBC_ORDER;
return sortSpecs->size();

}

The methods initializes m_tablemember and call the helper method
SLSortHandler::PrepareSort() to prepare the order by clause.

void SLSortHandler::PrepareSort(const SESortSpecs* in_
sortSpecs)
{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
222

Simba SQLEngine

http://www.magnitude.com/

m_orderBy = L"ORDER BY ";
simba_wstring colAlias, currColName, currOrder;
simba_wstring tableName = m_table->GetQueryReference
();
for (simba_size_t i = 0; i < in_sortSpecs->size();
++i)
{

const SESortSpec& curSortSpec = in_sortSpecs-
>at(i);
colAlias = m_table->GetQueryColumnName
(curSortSpec.m_colNumber);
currColName =
tableName + "." +
SLPassdownUtilities::QuoteAndEscapeQuotes
(colAlias, SL_DOUBLEQUOTE);
currOrder = curSortSpec.m_isAscending ?
ORDER_ASC : ORDER_DESC;
// Forming order by clause.
m_orderBy += currColName + " " + currOrder;
if (i != in_sortSpecs->size() - 1)
{

m_orderBy += ", ";

}

}

}

The PrepareSort() method constructs an order-by clause (e.g. “order by tableA.COL1
asc, tableB.COL2 desc”) and stores the clause in m_orderBy member. This order-by
clause is used in SLSortHanlder's TakeResult() method to construct the new query.
The following code snippet shows the implementation of TakeResult:

SharedPtr<DSIExtResultSet> SLSortHandler::TakeResult()
{

simba_wstring restrictedColNames =
PrepareRestrictedColNames();
simba_wstring newQuery =

"SELECT " + restrictedColNames +

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
223

Simba SQLEngine

http://www.magnitude.com/

" FROM " + m_table->GetQueryDefinition() +
" " + m_orderBy;
return SharedPtr<DSIExtResultSet>(new
SLPassdownResultTable(
m_table,
newQuery.GetAsUTF8(),
AutoPtr<SLResultSetColumns>(m_table-
>GetSelectColumnsClone(0, m_
restrictedColCount-1)),
m_log));

}

This method creates a new query using m_orderBy member (initialized in
SLSortHandler::PrepareSort()) and restrictedColNames (returned from
SLSortHandler::PrepareRestrictedColNames()), and uses the new query to construct
the result set. The following code snippet shows the implementation of
PrepareRestrictedColNames():

simba_wstring SLSortHandler::PrepareRestrictedColNames()
{

simba_wstring colAlias, currColName;
simba_wstring tableName = m_table->GetQueryReference
();
simba_wstring restrictedColNames;
for (simba_size_t i = 0; i < m_restrictedColCount;
++i)
{

if (!restrictedColNames.IsEmpty())
{

restrictedColNames += ",

}
colAlias = m_table->GetQueryColumnName(i);
currColName =
tableName + "." +
SLPassdownUtilities::QuoteAndEscapeQuotes
(colAlias, SL_DOUBLEQUOTE);

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
224

Simba SQLEngine

http://www.magnitude.com/

// Forming the restricted column names in
select clause
restrictedColNames += currColName;

}
return restrictedColNames;

}

This helper method prepares the restricted column names in select clause (in the form
of “tableA.COL1, tableB.COL2, tableC.COL3”).

Top Handlers

Top handling provides a DSII with the opportunity to handle the selection of a limited
number of rows. Passed down top operations are handled by classes which implement
ITopHandler. This interface defines one Passdownmethod that accepts an
AETopnode. If the top selection can be handled, the handler must return a new result
set that represents the selection of the base result.

Typically you will subclass the DSIExtAbstractTopHandler, which provides
support for queries with Top specified. Although this class supports both TOP N and
TOP P PERCENT, currently the Simba SQLEngine does not support the latter. Note
that implementing a top handler requires that a projection handler also be
implemented. This is because there is always an AEProject node under an AETop
node, so if the connector doesn't handle the projection, then the top will not be passed
down.

Consider the following example query being handled by an example connector:

SELECT TOP 3 NUM_SALARY FROM EMP

Prior to pass down, the AE Tree for this query is as follows:

AEQuery

AETop

AEProject

AETable: DBF.DBF.EMP
AEValueList

AEColumn: DBF.DBF.EMP.NUM_
SALARY

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
225

Simba SQLEngine

http://www.magnitude.com/

After pass down to the top handler, the Simba SQLEngine reduces the tree to:

AEQuery
AETable: DBF.DBF.PASSDOWN_EMP

In this sample connector, top handling is performed by SLTopHandler which
implements DSIExtAbstractTopHandler. In the example above, SLTopHandler
handled the top selection in the DSII and returned a result set which consists of a new
table (PASSDOWN_EMP) containing only the first three rows. The AETop node was
then replaced by the result table node since the query was passed down entirely (i.e.
fully handled by the DSII).

Through CQE with the SLTopHandler, the Simba SQLEngine has performed the
following steps to accomplish this:

1. Attempt to pass down the top operation. Is passing down top successful?
A. Yes. Take the result table from the DSII and replace the top node with the

new table node. The engine will use the table node and discard the top
node. Go to End.

B. No. Leave the top node as intact and the engine will handle it. Go to End.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
226

Simba SQLEngine

http://www.magnitude.com/

Implementation

The SQLite sample’s SLOperationHandlerFactory class is responsible for the
construction of all pass down handlers. Its CreateTopHandlermethod creates the
XMTopHandler object passing in the table associated with the selection query:

AutoPtr<ITopHandler>
SLOperationHandlerFactory::CreateTopHandler
(SharedPtr<Simba::SQLEngine::DSIExtResultSet> in_table)
{
SharedPtr<SLTableBase> table(static_cast<SLTableBase*> (in_
table.Get()));
return AutoPtr<ITopHandler>(new SLTopHandler(table, m_log));
}

SLProjectionHandler does not directly implement Passdown as this has been
implemented in its parent class which extracts the value for the total number of rows to
be returned. The parent class then invokes the (virtual) PassdownSkipMTopN method
implemented in XMTopHandler, passing along this number and the table provided to
Passdown. The following code snippet shows the implementation of
SLTopHandler::PassdownSkipMTopN which performs the Top logic:

SharedPtr<DSIExtResultSet> SLTopHandler::PassdownSkipMTopN(

SharedPtr<DSIExtResultSet> in_table,
simba_uint64 in_skip,
simba_uint64 in_limit)
{

simba_wstring limitClause = L"LIMIT " +
NumberConverter::ConvertUInt64ToString(in_
limit);
if (in_skip != 0)
{

limitClause += L" OFFSET " +
NumberConverter::ConvertUInt64ToStri
ng(in_skip);

}

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
227

Simba SQLEngine

http://www.magnitude.com/

simba_wstring newQuery = "SELECT * FROM (" +
m_table->GetQueryDefinition() + ") " +
limitClause;
return SharedPtr<DSIExtResultSet>(
new SLPassdownResultTable(
m_table,
newQuery.GetAsUTF8(),
AutoPtr<SLResultSetColumns>(m_table-
>GetSelectColumnsClone()),
m_log));

}

The most important aspect of this method is that it is capable of performing a sort. As
illustrated in the section Pass-Down Operation Handlers, when a Sort accompanies a
Top statement, the Sort passdown will be invoked before the Top passdown. For this
situation the Simba SQLEngine provides the DSII with two options for when to best
handle the sort:

1. When the Sort is being passed down, the DSII can sort all rows in the table and
return the result table with all rows sorted. Then when Top is being passed down
with the result table from the Sort passdown, it picks the first n rows in the sorted
table and returns a new result table with first n rows.

2. When the Sort is being passed down, the DSII can first check if there is a TOP
with the SORT. If so, the DSII can delay sorting, which means the DSII doesn’t
do sorting right away. Instead it creates the result table with same row order as
the original table and marks it as “needs sort”. Then when the Top is being
passed down with the result table from Sort passdown (the table with the mark
“needs sort”), it first checks whether the table needs sorting. If so, it performs the
sorting but only needs to do so on the most top n rows.

SLTopHandler::PassdownSkipMTopN first obtains a reference to the table from
which to retrieve the rows. And since the sample connector implements the second
option for handling the Sort statement, a check is made using the if (table-
>GetSortInfo().m_needsSort)statement to determine if the handler should
perform the sorting. Note that the m_needsSortmember was set by the Sort handler.
If set to true, the method gets the rows, but then sorts and returns only the top N rows.
If sorting is not required, then a copy of the table is made and all rows beyond the
maximum number are deleted one by one. From the table created, the method then
creates a result set to be returned to the Simba SQLEngine.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
228

Simba SQLEngine

http://www.magnitude.com/

Except Handlers

An Except operator is used to handle situations where only one of two combined select
statements returns rows. The Simba SQLEngine passes down the AE Tree node for
the except expression. This node is handled by classes which implement
IExceptHandler. This interface defines one Passdown method that accepts an
AEExcept node and must return a new result set containing the result of the whole
except.

Note:

Unlike most other pass down handlers, there are no abstract except handlers
to subclass so an except handler must directly implement IExceptHandler
as has been done in the sample connector.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
229

Simba SQLEngine

http://www.magnitude.com/

Except Example

Consider the following example query being handled by the sample connector:

Select a.log_c, a.char_c from alltype1 a EXCEPT ALL Select b.log_c, b.char_c From
alltype2 b

Prior to pass down, the AE Tree looks as follows:

AEQuery
AEExcept
AEProject
AETable: a
AEValueList
AEColumn: a.LOG_C
AEColumn: a.CHAR_C
AEProject
AETable: b
AEValueList
AEColumn: b.LOG_C
AEColumn: b.CHAR_C

After pass down, the Simba SQLEngine has optimized the AE Tree as follows:

AEQuery

AETable: PASSDOWN_a

In the sample connector, except handling is performed by SLExceptHandler which
implements IExceptHandler. For the example above, the operations on both sides
of the except were first passed down to the sample connector and handled using the
connector’s projection handler. The Simba SQLEngine then passed down the node
representing the except operation, which contains the projection tables in subnodes,
to SLExceptHandler. SLExceptHandler then generated and returned a result set
containing the row data for the columns of the except.

Implementing a except handler requires that a projection handler also be
implemented. This is because there are always AEProject nodes under an AEExcept
node, so if the connector does not handle the projections, then the Except is not
passed down.

Through CQE with the SLExceptHandler, the Simba SQLEngine has performed the
following steps to accomplish this:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
230

Simba SQLEngine

http://www.magnitude.com/

1. Check both operations preceeding the except operation. Are the results already
table objects?
A. Yes. Attempt to pass down the except operation to the DSII. Go to Step 2.
B. No. Unable to pass down except operation. Go to End.

2. Was the except successfully passed down?
A. Yes. Take the result table from the DSII and replace the except node with

the new table node. The engine uses the table node and discards the
except node. Go to End.

B. No. Go to End.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
231

Simba SQLEngine

http://www.magnitude.com/

Implementation

The sample’s SLOperationHandlerFactory class is responsible for the
construction of all pass down handlers. Its CreateExceptHandlermethod creates
the SLExceptHandler object. The tables to perform the except on will be provided
during pass down, so the object’s constructor does not take in a table like other pass
down handlers do:

SLExceptHandler::SLExceptHandler(ILogger& in_log) :
m_log(in_log)
{

// Do nothing.

}

SLExceptHandler’s Passdown method handles the pass down of a except operation:

SharedPtr<DSIExtResultSet> SLExceptHandler::Passdown
(AEExcept* in_node)
{

return SLSQLiteHelper::GetSetOperationQueryResultSet
(*in_node, m_log);

}

The method is aimed to produces the result set query for intersect or except handler. It
begins by checking if the ALL keyword is present. If the ALL keyword is present, then a
SQL query in the following form is constructed:

SELECT [leftColNames]
FROM [leftTable]
WHERE [EXISTS / NOT EXISTS]
SELECT [rightColNames]
FROM [rightTable]
WHERE [conditions on leftTableColumns and rightTableColumns]

If the ALL keyword is not present, then a SQL query in the following form is
constructed:

SELECT *FROM [leftTable]
[EXCEPT / INTERSECT]
SELECT *FROM [rightTable]

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
232

Simba SQLEngine

http://www.magnitude.com/

Then either case the query is used to construct the result set to be returned to the
Simba SQLEngine.

Note:

IExceptHandler will support both EXCEPT and EXCEPT ALL, so
implementing this interface in your own connector will allow you to support both
statements.

If the option was specified, then the pass down handler obtains the left and right tables
from the except and proceeds to perform the except operation by iterating through all
the row data for the columns specified in the except. This data is combined into a new
result set and then returned to the Simba SQLEngine. Note that this example is mainly
for demonstration purposes to show how a except can be handled, and does not
provide any significant increase in performance.

Intersect Handlers

The Intersect operator is used when you are only interested in the common or
overlapping results of two or more select statements. The Simba SQLEngine passes
down the AE Tree node for the intersect expression. This node is handled by classes
which implement IIntersectHandler. This interface defines one Passdown
method that accepts an AEIntersect node and must return a new result set containing
the result of the whole intersect.

Note:

Unlike most other pass down handlers, there are no abstract intersect handlers
to subclass so an intersect handler must directly implement
IIntersectHandler as has been done in the sample connector.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
233

Simba SQLEngine

http://www.magnitude.com/

Intersect Example

Consider the following example query being handled by the sample connector:

Select a.log_c, a.char_c from alltype1 a INTERSECT ALL Select b.log_c, b.char_c
From alltype2 b

Prior to pass down, the AE Tree looks as follows:

AEQuery
AEIntersect
AEProject
AETable: a
AEValueList
AEColumn: a.LOG_C
AEColumn: a.CHAR_C
AEProject
AETable: b
AEValueList
AEColumn: b.LOG_C
AEColumn: b.CHAR_C

After pass down, the Simba SQLEngine has optimized the AE Tree as follows:

AEQuery
AETable: PASSDOWN_a

In the sample connector, intersect handling is performed by SLIntersectHandler
which implements IIntersectHandler. For the example above, the operations on
both sides of the intersect were first passed down to the sample connector and
handled using the connector’s projection handler. The Simba SQLEngine then passed
down the node representing the intersect operation, which contains the projection
tables in subnodes, to SLIntersectHandler. SLIntersectHandler then
generated and returned a result set containing the row data for the columns of the
intersect.

Implementing a intersect handler requires that a projection handler also be
implemented. This is because there are always AEProject nodes under an AEIntersect
node, so if the connector doesn't handle the projections, then the Intersect will not be
passed down.

Through CQE with the SLIntersectHandler, the Simba SQLEngine has performed the
following steps to accomplish this:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
234

Simba SQLEngine

http://www.magnitude.com/

1. Check both operations preceeding the intersect operation. Are the results
already table objects?
A. Yes. Attempt to pass down the intersect operation to the DSII. Go to Step

2.
B. No. Unable to pass down intersect operation. Go to End.

2. Is passing down intersect successful?
A. Yes. Take the result table from the DSII and replace the intersect node with

the new table node. The engine uses the table node and discards the
intersect node. Go to End.

B. No. Go to End.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
235

Simba SQLEngine

http://www.magnitude.com/

Implementation

The sample’s SLOperationHandlerFactory class is responsible for the
construction of all pass down handlers. Its CreateIntersectHandlermethod
creates the SLIntersectHandler object. The tables to perform the intersect on will
be provided during pass down, so the object’s constructor does not take in a table like
other pass down handlers do:

SLIntersectHandler::SLIntersectHandler(ILogger& in_log) :
m_log(in_log)
{

// Do nothing.

}

SLIntersectHandler’s Passdown method handles the pass down of a intersect
operation:

SharedPtr<DSIExtResultSet> SLIntersectHandler::Passdown
(AEIntersect* in_node)
{

return SLSQLiteHelper::GetSetOperationQueryResultSet
(*in_node, m_log);

}

SharedPtr<DSIExtResultSet>
SLSQLiteHelper::GetSetOperationQueryResultSet(

AESetOperation& in_node,
ILogger& in_log)
{

assert(AE_NT_RX_TABLE == in_
node.GetLeftOperand()->GetNodeType());
assert(AE_NT_RX_TABLE == in_
node.GetRightOperand()->GetNodeType());
SharedPtr<SLTableBase> leftTable(static_
cast<SLTableBase*>(in_node.GetLeftOperand()-
>GetAsTable()->GetTable().Get()));

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
236

Simba SQLEngine

http://www.magnitude.com/

SharedPtr<SLTableBase> rightTable(static_
cast<SLTableBase*>(in_node.GetRightOperand()-
>GetAsTable()->GetTable().Get()));
simba_wstring resultQuery;
if (in_node.IsAllOptPresent())
{

simba_wstring leftColNames,
rightColNames;
simba_wstring existsCondition,
orCondition, combinedCondition;
simba_wstring currLeftColName,
currRightColName;
simba_uint16 columnCount = in_
node.GetColumnCount();
for (simba_uint16 i = 0; i <
columnCount; i++)
{

currLeftColName = leftTable-
>GetQueryReference() + "." +
leftTable-
>GetQueryColumnName(i);
currRightColName =
rightTable-
>GetQueryReference() + "." +
rightTable-
>GetQueryColumnName(i);
leftColNames +=
currLeftColName;
rightColNames +=
currRightColName;
existsCondition =
currLeftColName + L" = " +
currRightColName;
orCondition = L"(" +
currLeftColName + L" IS NULL

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
237

Simba SQLEngine

http://www.magnitude.com/

AND " + currRightColName +
L" IS NULL) ";
combinedCondition += L"(" +
existsCondition + L" OR " +
orCondition + L")";
if (i < columnCount - 1)
{

leftColNames += L",
";
rightColNames += L",
";
combinedCondition +=
L" AND ";

}
// NULL values in the
subquery are viewed as
unknown(not true), so
without the orCondition,
// NULL value comparisons
are all excluded from result
set.
simba_wstring existsClause =
(AE_NT_RX_INTERSECT == in_
node.GetNodeType()) ? L"
EXISTS " : L" NOT EXISTS ";
resultQuery = L"SELECT " +
leftColNames + L" FROM " +
leftTable-
>GetQueryDefinition() + L"
WHERE" + existsClause + L"
(SELECT " + rightColNames +
L" FROM " + rightTable-
>GetQueryDefinition() +

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
238

Simba SQLEngine

http://www.magnitude.com/

" WHERE " + L"(" +
combinedCondition + L"))";

}
else
{

resultQuery = L"SELECT *
FROM " + leftTable-
>GetQueryDefinition();
resultQuery += (AE_NT_RX_
INTERSECT == in_
node.GetNodeType()) ? L"
INTERSECT " : L" EXCEPT ";
resultQuery += "SELECT *
FROM (" + rightTable-
>GetQueryDefinition() + ")";

}
return SharedPtr<DSIExtResultSet>(
new SLPassdownResultTable(
leftTable,
resultQuery.GetAsUTF8(),
AutoPtr<SLResultSetColumns>
(leftTable->GetSelectColumnsClone
()),
in_log));

}

}

The method is aimed to produces the result set query for intersect or except handler.
And the logic here for “intersect” operation is similar to “except” operation (refer to the
EXCEPT example).

Note:

IIntersectHandler will support both INTERSECT and INTERSECT ALL,
so implementing this interface in your own connector will allow you to support
both statements.

If the option was specified, then the pass down handler obtains the left and right tables
from the intersect and proceeds to perform the intersect operation by iterating through

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
239

Simba SQLEngine

http://www.magnitude.com/

all the row data for the columns specified in the intersect. This data is combined into a
new result set and then returned to the Simba SQLEngine. Note that this example is
mainly for demonstration purposes to show how a intersect can be handled, and does
not provide any significant increase in performance.

Pivot Handlers

SQL Pivot pass-down is handled by IPivotHandler classes. The IPivotHandler
interface defines one pass down function that accepts an AEPivot node. If the pivot
operation can be handled, the passdown function returns a new result set that
represents the pivot result. If the pivot cannot be handled (the passdown function
returns a null result) the query fails because SQLEngine currently doesn't have logic to
evaluate the PIVOT clause.

To simplify analysis of the AEPivot node, two abstract subclasses are defined
(similar to the AEAggregate passdown). The DSIExtAbstractPivotHandler
class divides the AEPivot into passdown composed of a list of elements including:

l The individual aggregation functions specified in the aggregation list (see the
example below for details).

l The column reference list.
l The pivot column list.
l The pivot alias name.
l The grouping columns and the result measure columns (the last two are derived
elements from the pivot clause provided by SQLEngine, which helps make the
pass-down implementation easier).

If all the elements passed down are accepted (return TRUE), a method called
CreateResult will be invoked to create the pivot result that will replace the AEPivot
node in the AE-Tree. If any element passed down is rejected (returns FALSE), the
entire pivot passdown is abandoned and CreateResult will not be invoked.

The DSIExtSimplePivotHandler class derives further from
DSIExtAbstractPivotHandler to identify and pass down several simple cases for
each aggregation in the aggregation list. It only passes down aggregations of literals or
column references. If the aggregation contains any more complex value expressions,
the passdown is rejected.

The evaluation result of a PIVOT clause will contain all the columns from the pivot
source table except those appearing in the aggregation list and column reference list.
It also includes the generated (measure result) columns by combining each pivot
column with each aggregation (see example below).

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
240

Simba SQLEngine

http://www.magnitude.com/

Pivot Example

For this example we will use the following query:
SELECT * FROM T1 PIVOT (AVG(C1) as A1, COUNT(C2) FOR C3 IN
('a', 'b'))

In the query above, T1 is the source table relation, AVG(c1) as A1, COUNT(C2) is
the aggregation list, C3 is the column reference list, and ('a', 'b') is the pivot
column list. Each aggregation is represented either by an AERename (in case the
aggregation has an alias) or AEAggrFunction node. Each column reference is
represented by an AEColumn node. Each pivot column is represented by an
AEPivotColumn node.

If table (T1) has 4 columns (C1, C2, C3, C4), then C4 represents the grouping column
list and a_A1, a, b_A1, b is the list of result measure columns as described earlier
during the passdown processing in DSIExtAbstractPivotHandler (see the
AEPivot.h and DSIExtAbstractPivotHandler.h header files in the Simba
SDK installation for details).

For the sample query above, the result columns would include C4, a_A1, a, b_A1, b
(the actual measure column names can be customized). The passdown handler
should create a table representing the pivot result with these columns.

For the sample query, the AETree looks like this before pass-down:
AEQuery
AEProject
AEPivot: PivotTable
AETable: T1
AEValueList
AERename: A1
AEAggrFunction: AVG ALL
AEColumn: C1
AEAggrFunction: COUNT ALL
AEColumn: C2
AEValueList
AEColumn: C3
AEPivotColumnList
AEPivotColumn
AEValueList
AELiteral: a
AEPivotColumn
AEValueList
AELiteral: b
AEValueList

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
241

Simba SQLEngine

http://www.magnitude.com/

AEColumn: "PivotTable"."C4"
AEColumn: "PivotTable"."a_A1"
AEColumn: "PivotTable"."b_A1"
AEColumn: "PivotTable"."a"
AEColumn: "PivotTable"."b"
The AETree looks like this after pass down to the pivot
handler:
AEQuery
AETable: PASSDOWN_PivotTable

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
242

Simba SQLEngine

http://www.magnitude.com/

Implementation

The pivot handler implementation in DSII can choose to inherit from IPivotHandler
directly. In this case, the required information to implement pivot operation can be
retrieved from the input AEPivot node directly in the function:
Passdown (AEPivot& in_node)

Alternatively, DSII can choose to inherit from DSIExtAbstractPivotHandler or
DSIExtSimplePivotHandler. The constructor for the sample SLPivotHandler
is provided with the source table for the pivot operation. It also initializes the data
structure pointers for storing the elements that are set during the passdown
processing.

SLPivotHandler::SLPivotHandler(
SharedPtr<SLTableBase> in_table,
SLDataEngine& in_dataEngine,
ILogger& in_log) :
m_table(in_table),
m_pivotColumnList(NULL),
m_groupByColumns(NULL),
m_pivotMeasureColumns(NULL),
m_dataEngine(in_dataEngine),
m_log(in_log)
{

; // Do nothing.
}

SLPivotHandler relies on the Passdown() implementation of the
DSIExtAbstractPivotHandler base class. As a number of Set()*methods are
defined in theDSIExtAbstractPivotHandler class which are called by Passdown
to provide the handler with information specified in the pivot clause. Each method then
returns TRUE or FALSE to specify if that element can be handled, and store the
element for implementing the pivot operation later on.

For example, SLPivotHandler::SetPivotColumnList shown below stores the
input pivot column list and determines whether pass down is supported based on
whether the pivot columns only contain identifiers.
bool SLPivotHandler::SetPivotColumnList(AEPivotColumnList &
in_pivotColumnList)
{

assert(!m_columnReferences.empty());
assert(NULL == m_pivotColumnList);

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
243

Simba SQLEngine

http://www.magnitude.com/

m_pivotColumnList = &in_pivotColumnList;
// Only support identifiers in the IN value list
for (simba_size_t k = 0; k < m_pivotColumnList-
>GetChildCount(); k++)
{

const Simba::SQLEngine::AEValueList* values =
m_pivotColumnList->GetChild(k)->GetOperand();
for (simba_size_t j = 0; j < values-
>GetChildCount(); j++)
{

const Simba::SQLEngine::AEValueExpr*
aValue = values->GetChild(j);
if (AE_NT_VX_LITERAL != aValue-
>GetNodeType()
{

return false;

}

}

}
return true;

}

Unpivot Handlers

Unpivot handling provides a DSII with the opportunity to rotate columns of a table-
valued expression into column values. The Simba SQLEngine passes down the AE
Tree node for the unpivot expression. This node is handled by classes which
implement IUnpivotHandler. This interface defines one passdown method that
accepts an AEUnpivot node and must return a new result set containing the result of
the unpivot operation.

Note:

There are no abstract unpivot handlers to be subclassed, so an unpivot handler
must directly implement IUnpivotHandler. See the sample connector for an
example.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
244

Simba SQLEngine

http://www.magnitude.com/

Unpivot Example

For this example, we will use the following query:
SELECT Customer, Provider, AvgExpanse FROM Orders UNPIVOT
(AvgExpanse FOR Provider IN (Apple_AvgExpanse as 'Apple',
SamSung_AvgExpanse as 'SamSung')) Orders_Unpivot

This is how the AE Tree would appear before pass down:
AEQuery
AEProject
AEUnpivot: Alias="Orders_Unpivot" MeasureCols={"AvgExpanse"}
UnpivotCols={"Provider"}
AETable: ORDERS
AEUnpivotGroupDefinitionList
AEUnpivotGroupDefinition
AEValueList
AEColumn: "ORDERS"."Apple_AvgExpanse"
AEValueList
AELiteral: Apple; Character String Literal
AEUnpivotGroupDefinition
AEValueList
AEColumn: "ORDERS"."SamSung_AvgExpanse"
AEValueList
AELiteral: SamSung; Character String Literal
AEValueList
AEColumn: "Orders_Unpivot"."Customer"
AEColumn: "Orders_Unpivot"."Provider"
AEColumn: "Orders_Unpivot"."AvgExpanse"

After passdown, this is how the SQL Engine optimized AE Tree looks:
AEQuery
AETable: PASSDOWN_Orders_Unpivot

In the sample connector, unpivot handling is performed by SLPivotHandler, which
implements IUnpivotHandler. In the example above, the Simba SQLEngine
passes down the AEunpivot node representing the unpivot operation which contains
the table and the group definition list, in subnodes, to SLPivotHandler. This handler
then generates and returns a result set containing the row data for the columns of the
unpivot.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
245

Simba SQLEngine

http://www.magnitude.com/

Implementation

The sample’s SLOperationHandlerFactory class is responsible for the
construction of all pass down handlers. Its CreateUnpivotHandlermethod creates
the SLPivotHandler object. The tables for the unpivot are provided during pass
down, so the object’s constructor does not need to be implemented.

The Passdownmethod for SLPivotHandler handles the pass down of a unpivot
operation:
SharedPtr<DSIExtResultSet> SLUnpivotHandler::Passdown
(AEUnpivot& in_node)
{

m_table.Reset(static_cast<SLTableBase*>(in_
node.GetOperand()->GetAsTable()->GetTable().Get()));
// Column containing values.
const std::vector<simba_wstring>& measureColumnList =
in_node.GetMeasureColumnList();
// Column containing types.
const std::vector<simba_wstring>& unpivotColumnList =
in_node.GetUnpivotColumnList();
// List to get column index and alias name values.
AEUnpivotGroupDefinitionList* unpivotGroupDefList =
in_node.GetUnpivotGroupDefinitionList();
if (!GetUnpivotGroupDefinitionInfo
(*unpivotGroupDefList))
{

return SharedPtr<DSIExtResultSet>();

}
// Generate column metadata.
std::vector<simba_uint16> unreferencedColumnNumbers =
in_node.GetUnreferencedColumnNumbers();
AutoPtr<SLResultSetColumns> newColumnMetadata
(GenerateColumnMetadata(unreferencedColumnNumbers,
measureColumnList, unpivotColumnList));
bool isIncludeNULL = false;
if (in_node.IncludeNulls())
{

isIncludeNULL = true;

}

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
246

Simba SQLEngine

http://www.magnitude.com/

simba_wstring newQuery;
newQuery = GetQuery(
unreferencedColumnNumbers,
measureColumnList,
unpivotColumnList,
isIncludeNULL);
return SharedPtr<DSIExtResultSet>(
new SLPassdownResultTable(
m_table,
newQuery.GetAsUTF8(),
AutoPtr<SLResultSetColumns>(newColumnMetadata),
m_log));

}

For each row in the source table, the Unpivotmethod iterates through the group
definition list and does the following:

1. Ignores the rows where the data of measure columns are null, unless unpivot is
set to include nulls.

2. Creates an empty row for the result table.
3. Copies the data of unreferenced columns.
4. Sets the data in measure columns.
5. Sets the data in unpivot columns.

Combining Pass-Downs

For complex queries involving multiple tables, filters, joins, or aggregations, there may
be many operations that can be passed down. However, to pass down an operation
higher in the AE Tree, all operations below that node must have been fully passed
down. This limitation is required so that when constructing the new operation handler,
the base tables passed to the factory are always tables either opened by the data
engine or constructed by earlier operation handlers. Therefore, if a table filter could not
be passed down, the engine cannot pass down a join higher up in the AE-Tree
involving the result of the table filter because the engine must first process the filter
itself before the join can be performed.

Pre Optimization Analysis of the AE Tree

If optimizations cannot be performed within pass down handlers, the DSII has the
option to analyze an AE Tree after it has been generated from the query, and to
optimize or alter it prior to the three stop optimization process. Doing this can
completely change the query and is only recommended as a last resort if the
optimizations cannot be performed elsewhere.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
247

Simba SQLEngine

http://www.magnitude.com/

This can be accomplished by overriding
theDSIExtSqlDataEngine::CreateQueryExecutorto intercept the
AEStatements before calling the base class function to finish constructing the query
executor:

DSIExtQueryExecutor*
CustomerDSIISqlDataEngine::CreateQueryExecutor(

AutoPtr<AEStatements> in_aeStatements)
{

// Analyze and alter the AE-Trees found in
in_aeStatements
return
DSIExtSqlDataEngine::CreateQueryExecutor(in_
aeStatements);

}

The SQLite sample implementation of the overridden CreateQueryExecutor method is
shown below:

IQueryExecutor* SLDataEngine::CreateQueryExecutor
(AutoPtr<Simba::SQLEngine::AEStatements> in_aeStatements)
{

assert(!in_aeStatements.IsNull());
// Allow the logged pre-optimized AETree to be
retrieved via a custom statement property.
if (in_aeStatements->GetCount() > 0)
{

m_statement->SetCustomProperty(
SL_CUSTOM_PROP_PRE_OPTIMIZE_AETREE,
AttributeData::MakeNewWStringAttributeData(
AETreeLog::DumpToString(in_aeStatements-
>GetStatement(0))));

}
AutoPtr<DSIExtQueryExecutor> executor(new
SLQueryExecutor(
in_aeStatements,
m_context,
static_cast<SLStatement*>(m_statement)));

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
248

Simba SQLEngine

http://www.magnitude.com/

// Prepare the results (ETree) before returning the
query executor
executor->PrepareResults();
return executor.Detach();

}

How to analyze the tree, and what changes to make, is up to the DSII implementer
according to whatever circumstances require it so no example can be given here.
Instead, refer to the API reference guide for full details on the structure of the AE-Tree.

Related Topics

Collaborative Query Execution

Statements

SQL Engine Memory Management

The SQL Engine component of the Magnitude Simba SDK allows applications to
execute SQL commands on data stores that are not SQL-capable. Performing these
operations often requires the SQL Engine to cache the data in memory; for example,
to execute an ORDER BY command, the SQL engine must retrieve all the requested
data, allocate memory to perform the sort, then return the result. Many SQL
commands utilize a significant amount of memory when executed against large data
sets.

You can design your custom connector for optimum behavior and performance during
memory-intensive operations by configuring how the SQL Engine uses memory and
disk resources. For example, you may decide that connectors deployed in the cloud
should not use on-disk memory. You can also design your custom connector for
maximum speed given a single memory-intensive operation, or you can choose to
share memory resources between multiple operations.

Tip:

If you see a Memory Management error or the performance is affected, you
can try increasing the memory manager limit. Add or edit the
MemoryManagerMemoryLimit key in your simba.ini file or registry setting,
and increase the limit.

Configuring Memory Properties

You can use DSI properties to configure the SQL Engine memory strategy. The
DSIDriver class defines default values for the memory properties in DSIDriver.h.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
249

Simba SQLEngine

http://www.magnitude.com/

It also reads in values for these properties from the registry on Windows or from .ini
files on Linux and Unix. Properties set in the registry or .ini files will override the
properties set programmatically. If your connector extends the DSIDriver class, you
can use this functionality to set the memory properties.

Note:

The MemoryManager object is a singleton class and sets the memory strategy
for all connections and statements of one connector instance. You cannot set a
memory strategy per connection. MemoryManager is instantiated the first time
the SQL Engine is required. If you decide to specify memory configuration
properties on the connection string, be aware that the first connection may not
preceded the instantiation of the MemoryManager object.

The memory properties are set in the Simba Setting Reader location. For example,
this location for the QuickStart connector is:

l In the Windows registry, HKEY_LOCAL_
MACHINE\SOFTWARE\Simba\Quickstart\Driver (for a 64-bit connector on a
64-bit machine, or a 32-bit connector on a 32-bit machine)

l On Linux or Unix, simba.quickstart.ini

Memory Properties

Use the properties in this section to configure your connector's memory strategy. Each
DSI property has a corresponding key in the registry or .ini file.

For example, you can set the default value of DSI_MEM_MANAGER_STRATEGY
property in your MyDSIDriver.h file. If the corresponding registry key HKEY_
LOCAL_
MACHINE\SOFTWARE\Simba\Quickstart\Driver\MemoryManagerStrategy is set,
that value will override the default value.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
250

Simba SQLEngine

http://www.magnitude.com/

DSI_MEM_MANAGER_STRATEGY

Type Description Key Name

UInt16

Specifies the memory strategy.
Defines whether the SQL Engine
can swap memory to disk, and
whether to maximize the
performance of fewer operations
or to support more concurrent
operations.

Allowed Values: 1, 2, or 3. See
SQL Engine Memory
Management.

MemoryManagerStrategy

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
251

Simba SQLEngine

http://www.magnitude.com/

DSI_MEM_MANAGER_MEMORY_LIMIT

Type Description Key Name

UIntNative

Specifies the total amount of
memory, in megabytes, that
the SQL Engine can use
when executing commands.

The default value depends
on the operating system’s
bitness. The value is 1GB on
32-bit machines and 2GB on
64-bit machines.

Note: Memory
management is only
performed for
operations that
consume memory.
The SQL Engine will
not allocate more
memory (RAM) for
these operations
than is specified by
this limit. However,
the internal variables
and data members of
these memory-
controlled algorithms
are not included in
this limit.

MemoryManagerMemoryLimit

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
252

Simba SQLEngine

http://www.magnitude.com/

DSI_MEM_MANAGER_THRESHOLD_PERCENT

Type Description Key Name

UInt16

Specifies the maximum
percentage of the memory
limit, specified by DSI_
MEM_MANAGER_
MEMORY_LIMIT, that
can be used by existing
operations.

Allowed Values: An
integer between 1 and
100. The default value is
80.

MemoryManagerThresholdPercent

DSI_MEM_MANAGER_SWAP_DISK_LIMIT

Type Description Key Name

UIntNative

Specifies the maximum
size of all the swap files
on disk, in megabytes.

The default value is no
limit.

MemoryManagerSwapDiskLimit

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
253

Simba SQLEngine

http://www.magnitude.com/

SwapFilePath

Type Description Key Name

String

Specifies the full path to the directory where the
swap files are located. By default, this is set to the
default temporary directory of the operating
system.

You can get and set this property using
SimbaSettingReader::GetSwapFilePath()
and
SimbaSettingReader::SetSwapFilePath
(). There is no corresponding DSI property.

Allowed Value: Any valid directory path.

Note:

l This property does not map to a DSI
property.

l To improve performance, map this to
a folder in an SSD drive.

SwapFilePath

For information on how to configure these properties in a connector, see SQL Engine
Memory Management.

SQL Engine Memory Strategy

In general, when the SQL Engine receives a command, it will make a request to
allocate memory (RAM) to complete the operation. As the operation requires more
memory, the SQL Engine will continue to request that more memory be allocated. At
some point in the operation, the SQL Engine may decide to stop allocating more RAM
and start swapping to disk, so that it can reserve more memory for new operations.
The memory strategy, specified by DSI_MEM_MANAGER_STRATEGY, specifies the
tradeoff between allocating more RAM for the current operation and reserving more
RAM for new operations. It also specifies whether or not to swap memory to disk.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
254

Simba SQLEngine

http://www.magnitude.com/

Note:

l Because the SQL Engine allocates memory before executing a query, it
can return a memory error immediately if the requested memory is larger
than the memory limit. However, if the requested memory is within the
memory limits but currently not available, due to other consumers
consuming memory (e.g. in a multi-threaded scenario) the memory
manager makes the requester wait until enough memory becomes
available.

l Memory swapping increases the amount of available memory and
enables commands on very large data sets; however, writing to disk also
negatively affects performance.

The SQL Engine supports three memory configuration strategies.

Memory Manager Strategy 1

When this memory strategy is used, the SQL Engine does not swap memory. When
executing commands, memory is allocated up to the limit specified by DSI_MEM_
MANAGER_MEMORY_LIMIT. If this amount of memory is insufficient, the command
will be terminated with an out of memory error.

This strategy is useful if the connector should not write to disk, for example in cloud
deployments.

Memory Manager Strategy 2

When this memory strategy is used, the SQL Engine prevents any single operation
from using all the available memory. If a single operation uses a significant percentage
of the memory limit and then requests more memory, the SQL Engine may swap to
disk rather than allocate more memory. This ensures that enough memory is available
for new commands to be processed with good performance. The SQL Engine's
internal logic, which takes into account the value of DSI_MEM_MANAGER_
THRESHOLD_PERCENT, determines the percentage of the memory limit that a
single operation can use.

Use this strategy to ensure that a connector can always handle multiple commands
with good performance.

Memory Manager Strategy 3

When this memory strategy is used, the SQL Engine allows a single command to
access all the available memory, up to the limit specified by DSI_MEM_MANAGER_
THRESHOLD_PERCENT. This strategy ensure maximum performance of a single

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
255

Simba SQLEngine

http://www.magnitude.com/

command, while allowing subsequent commands to be processed with slower
performance.

The SQL Engine reserves a percentage of the memory limit, specified by DSI_MEM_
MANAGER_THRESHOLD_PERCENT, for new operations. Each new operation
received after the DSI_MEM_MANAGER_THRESHOLD_PERCENT is reached is
allocated only the minimum amount of RAM, and uses disk swapping.

Use this strategy to ensure that a connector can execute a single command with
maximum performance.

Example:

Assume the following:
DSI_MEM_MANAGER_STRATEGY = 3
DSI_MEM_MANAGER_THRESHOLD_PERCENT = 80 /* percent */
DSI_MEM_MANAGER_MEMORY_LIMIT = 8 /* megabytes */

Suppose the SQL Engine is executing a single query against a very large data store.
Once the memory allocated for this query reaches 6.4 megabytes, the SQL Engine
uses memory swapping to complete the query. While executing the first query, the
SQL Engine receives more queries. For each of the subsequent queries, SQL Engine
allocates only the minimum amount of memory required and then uses memory
swapping. All queries complete. The performance of the first query is maximized while
the performance of the subsequent queries is affected.

Data Manipulation Language (DML)

The SQL Engine can support SQL Data Manipulation Language (DML) queries for
INSERT, UPDATE and DELETE statements. You can choose to support some or all of
these queries in your custom connector's result set implementation.

Note:

The SQL Engine does not support ALTER, TRUNCATE, COMMENT, or
RENAME statements.

You can also use an index to optimize these queries. Since UDPATE and DELETE
queries might involve a WHERE clause, using an index can improve performance.

The following sections explains how to enable support for DML queries in your custom
connector.

Preparing to Support DML in the C++ SDK

This section explains how to change your connector from read-only to read-write, in
order to support DML.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
256

Simba SQLEngine

http://www.magnitude.com/

Step 1 - Specify the Connection is Read/Write

Set the DSI_CONN_DATA_SOURCE_READ_ONLY property in the constructor of your
CustomerDSIIConnection object, to “N” which enables read/write access to the
datasource. The preferred method for setting this is to call the
DSIPropertyUtilities::SetReadOnly helper method and pass in false for
the in_isReadOnly parameter.

Example: SQLite's Connection class

In this example, the SQLite sample connector’s SLConnection class contains a
helper method called SetConnectionPropertyValues(), which is invoked from
the class’s constructor. One of the first actions this method performs is to call the
SetReadOnlymethod passing in false:
void SLConnection::SetConnectionPropertyValues()
{

DSIPropertyUtilities::SetStoredProcedureSupport(this,
true);
DSIPropertyUtilities::SetReadOnly(this, false);
...

Step 2 - Open the Underlying Table in Read/Write Mode

In your connector’s DSIExtSqlDataEngine-derived class, ensure that the
OpenTablemethod can open your data source’s underlying table in read/write mode.

Example: SQLite's OpenTable Method

In the SQLite sample connector, the in_openType parameter is forwarded to the
underlying CBTable class that the OpenTablemethod creates:
SharedPtr<DSIExtResultSet> SLDataEngine::OpenTable(const
simba_wstring& in_catalogName,const simba_wstring& in_
schemaName,const simba_wstring& in_
tableName,DSIExtTableOpenType in_openType)
{

CBUtilities utilities(m_codeBaseSettings);
SharedPtr<DSIExtResultSet> table;
simba_wstring schemaName(L"");
if (utilities.DoesTableExist(m_codeBaseSettings->m_
dbfPath,in_catalogName,in_schemaName,in_
tableName,schemaName))
{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
257

Simba SQLEngine

http://www.magnitude.com/

table = new CBTable(
m_codeBaseSettings,
m_statement,
in_catalogName,
schemaName,
in_tableName,
(TABLE_OPEN_READ_ONLY == in_openType));

}
return table;

}

Step 3 - Specify how UPDATE and DELETE Queries are Handled

Determine if UPDATE and DELETE queries will be handled by a result set or by an
index. Set DSIEXT_DATAENGINE_USE_DSII_INDEXES property to “N” or “Y”
respectively to enable indexing. By default, the DSII indexes are disabled in DSI layer
in the method DSIExtSqlDataEngine::SetDefaultPropertyValues().

Step 4 - Implement the Required Methods

Implement the following required methods:

l AppendRow()
l DeleteRow()

l WriteData()

Optionally, you can implement the additional methods:

l OnStartRowUpdate()

l OnFinishRowUpdate()

l OnStartDMLBatch()
l OnFinishDMLBatch()

These methods are described further in the following sections, as well as in the C++
API Reference.

Preparing to Support DML in the Java SDK

Supporting DML in the Java SDK is similar to supporting it in the C++ SDK, as
described in this section.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
258

Simba SQLEngine

https://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference
https://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference
http://www.magnitude.com/

Step 1 - Specify Read/Write on your Connection

Set the DSI_DATA_SOURCE_READ_ONLY property in the constructor of your
CustomerDSIIConnection object, to “N” which enables read/write access to the
datasource. The preferred method for setting this is to call the
PropertyUtilities::SetReadOnly helper method pass in false for the
isReadOnly parameter.

Step 2 - Open the Underlying Table in Read/Write Mode

In your connector’s DSIExtSqlDataEngine-derived class, ensure that the
OpenTablemethod can open your data source’s underlying table in read/write mode.

Note:

There is no Step 3, because the Java SDK does not support indexing.

Step 4 - Implement the Required Methods

Implement the following required methods:

l AppendRow()
l DeleteRow()

l WriteData()

Optionally, you can implement the additional methods:

l OnStartRowUpdate()

l OnFinishRowUpdate()

l OnStartDMLBatch()
l OnFinishDMLBatch()

These methods are described further in the following sections, as well as in the Java
API Reference Guide.

Handling INSERT Statements

If a connector will handle INSERT statements, these must be handled in a result set
regardless of whether indexes are enabled or not.

To handle row insertions, any table (that is, any DSIExtResultSet–derived class)
returned by OpenTable in TABLE_OPEN_READ_WRITE mode must override and
implement the AppendRow and WriteDatamethods, and optionally
OnFinishRowUpdate. Note that OnStartRowUpdate will not be called for INSERT

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
259

Simba SQLEngine

https://www.simba.com/docs/SDK/SimbaEngine_Java_API_Reference
https://www.simba.com/docs/SDK/SimbaEngine_Java_API_Reference
http://www.magnitude.com/

statements because the invocation of the AppendRowmethod implies that a row
update will occur.

Note:

Under the Java Simba SQLEngine, result sets are typically defined by deriving
from the DSIExtJResultSet class. DSIExtJResultSet provides default
implementations which throw an exception, and therefore each must be
implemented.

AppendRow is invoked by the Simba SQLEngine when an INSERT statement is
encountered, to signal to the connector that a new row needs to be created. This
method must append an empty row to the end of the underlying data source and
position the cursor at the new row. After the method exits, the Simba SQLEngine will
then invoke the class’s WriteDatamethod (described below) to write the column
data to the cells in this row. Connectors can also perform other row insertion logic as
required. For example a connector could cache flags to indicate that a row insertion
has occurred, where the flags are used in other phases of data insertion.

Example: SQLite's CBTable::AppendRow method

The CBTable::AppendRowmethod from the SQLite sample connector positions the
cursor at the bottom of the underlying table. It then adds an empty row and caches
flags indicating that a row is in the process of being appended and that the table has
been modified:
void CBTable::AppendRow()
{

ENTRANCE_LOG(m_log, "Simba::", "CBTable", "AppendRow");
SE_CHK_INVALID_OPR("AppendRow", m_isReadOnly);
// Move to the last record.
m_tableHandle.bottom();
// Append a blank row.
m_tableHandle.appendStart();
m_tableHandle.blank();
m_isAppendingRow = true;
m_hasInsertedRecords = true;

}

The m_isAppendingRow flag will be checked at a later point after the row has been
updated, in order to perform the final data commit. See OnFinishRowUpdate below.
The m_hasInsertedRecords flag is later checked when closing the cursor, to
determine if table operations should be flushed:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
260

Simba SQLEngine

http://www.magnitude.com/

void CBTable::DoCloseCursor()
{

...
if (m_hasInsertedRecords)
{

m_tableHandle.flush();
}
...

}

Implementing OnFinishRowUpdate

Optionally, the result set can also implement OnFinishRowUpdate if needed.
OnFinishRowUpdate is invoked by the Simba SQLEngine after a row has been
updated or inserted. A connector can use this method to perform any final steps
required to complete the data update or row insertion, such as committing the data to
disk.

Example: SQLite's OnFinishRowUpdate method

In this example, SQLite checks if the method is being invoked due to a row insertion
operation. It then performs the final logic necessary to append a row to the underlying
table. Afterwards, it increments the known row count, sets the cursor to the new row,
and resets the flag it uses to determine if the row is being inserted.
void CBTable::OnFinishRowUpdate()
{

if (m_isAppendingRow)
{

// Commit the new row.
m_tableHandle.append();
// Update the row count and current row.
++m_rowCount;
assert(m_rowCount == m_tableHandle.recCount());
SetCurrentRow(m_rowCount - 1);
m_isAppendingRow = false;

}
}

Optionally, the OnStartDMLBatch and OnFinishDMLBatchmethods can also be
implemented to handle the start and end of an INSERT operation in the result set
class. OnStartDMLBatch takes in the DMLType enum which specifies the type of
operation (DML_INSERT in this case), as well as the number of rows that will be
affected by the operation. This method will be invoked before AppendRow and
OnFinishDMLBatch will be invoked after the INSERT operation is complete. These

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
261

Simba SQLEngine

http://www.magnitude.com/

methods can be used by a connector to prepare for the insertion of new rows and to
perform any post-INSERT logic in the result set class.

Note:

The corresponding methods also exist under the Java Simba SQLEngine.

Handling UPDATE and DELETE Statements in a Result Set

A connector can handle UPDATE and DELETE statements on a table, for example
DSIExtResultSet for C++ or DSIExtJResultSet for Java. A connector can also
handle UPDATE and DELETE statements on one of its indexes, for example
DSIExtIndex. This section describes the methods you use to implement the
handling of these statements in a result set.

Note:

l If indexes are enabled, these methods will not be invoked. The
analogous methods in DSIExtIndex will be called instead.

l Indexes are not supported when using the Java Simba SQLEngine.

Handling Updates

This section explains how to handle an update statement in a result set when using the
C++ SDK.

Note:

Handling row updates/insertions and DML batches under the Java Simba
SQLEngine is similar. except that tables derive from DSIExtJResultSet and
the TableOpenType.READ_WRITE enummust be passed to OpenTable().

To handle an UPDATE statement in a result set, any table (i.e. DSIExtResultSet–
derived class) returned by OpenTable in TABLE_OPEN_READ_WRITE mode must
override and implement WriteData. Optionally, it can also override and implement
OnStartRowUpdate, OnFinishRowUpdate, OnStartDMLBatch, and
OnFinishDMLBatch.

WriteData is invoked by the Simba SQLEngine when inserting a row or updating row
values. This method is responsible for writing a single column of data for a particular

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
262

Simba SQLEngine

http://www.magnitude.com/

row to the underlying table, and will be invoked for each column which is to be inserted
or updated.

Example: Codesbase's CBTable::WriteData() method

This method starts by ensuring that the operation is not being performed on a
read-only table and that the column and row specified are within range. A handle to the
underlying column is then obtained which will be used to specify the cell to write to.
The method then checks if the column’s default value (e.g. null) should be stored, and
then delegates the writing of the data to a helper class called CBTypeUtilities
which handles the details of storing the data in the underlying table.
bool CBTable::WriteData(

simba_uint16 in_column,
SqlData* in_data,
simba_signed_native in_offset,
bool in_isDefault)

{
ENTRANCE_LOG(m_log, "Simba::", "CBTable", "WriteData");
SE_CHK_INVALID_OPR("WriteData", m_isReadOnly);
SE_CHK_INVALID_ARG(

(in_isDefault ? (NULL != in_data) : (NULL == in_data))
||

(m_tableHandle.numFields() < in_column));
if (m_tableHandle.data->readOnly)
{

CBTHROW(DIAG_GENERAL_ERROR,
L"CBReadOnlyWriteFileError");

}
if (GetCurrentRow() >= m_rowCount)
{

CBTHROW2(
DIAG_ROW_VAL_OUT_OF_RANGE,
L"CBInvalidRowNum",
NumberConverter::ConvertToWString(GetCurrentRow()

+ 1),
m_tableName);

}
// Get the column handle.
Field4 columnHandle(m_tableHandle, in_column + 1);
if (columnHandle.isNull())
{

CBTHROW1(
DIAG_COLUMN_MISSING,

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
263

Simba SQLEngine

http://www.magnitude.com/

L"CBInvalidColumnIndex",
NumberConverter::ConvertToWString(in_column + 1));

}
if (in_isDefault)
{

// NULL is the default value for our connector.
return CBTypeUtilities::WriteDefault(

columnHandle,
GetSelectColumns()->GetColumn(in_column)-

>GetMetadata()->GetSqlType());
}
return CBTypeUtilities::WriteConvertData(

columnHandle,
m_binaryFile.Get(),
in_data,
in_offset,
GetSelectColumns()->GetColumn(in_column)-

>GetColumnSize(),
m_parentStatement->GetWarningListener());

}

The OnStartRowUpdate and OnFinishRowUpdatemethods from
DSIExtResultSet can also be overridden and implemented if needed.

OnStartRowUpdate is invoked by the Simba SQLEngine when an UPDATE
operation is about to be performed, before writing data to update a row with (i.e. before
WriteData is invoked). This method does not take in any parameters but can be
optionally used by a connector to cache information that a row update is about to take
place (e.g. to store a flag that WriteData can use to determine if the write is part of an
insert or update operation). Note that this method is not called after AppendRow (i.e.
during an INSERT operation) because it is implied that data will be written.

OnFinishRowUpdate is invoked by the Simba SQLEngine after data has been
updated or a row inserted. This method can be used by a connector to perform any
final steps required to complete the data update or row insertion, such as committing
the data to disk. Note that the sample connector only uses this method to complete the
insertion of a new row and not for row updates.

Optionally, the OnStartDMLBatch and OnFinishDMLBatchmethods can also be
implemented to handle the start and end of the UPDATE operation in the result set
class. OnStartDMLBatch takes in the DMLType enum which specifies the type of
operation (DML_UPDATE in this case), as well as the number of rows that will be
affected by the operation. This method will be invoked before OnStartRowUpdate

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
264

Simba SQLEngine

http://www.magnitude.com/

and OnFinishRowUpdate. The OnFinishDMLBatchmethod will be invoked after
the UPDATE operation is complete. These methods can be used by a connector to
prepare for the updates of rows and to perform any post-UPDATE logic in the result
set class.

Handling Deletes

To handle DELETE statements in a result set, the DeleteRowmethod must be
overridden and implemented.

DeleteRow is invoked by the SQL Engine or Java Simba SQLEngine when a
DELETE statement is encountered. This method is responsible for performing the
deletion logic for the current row on the underlying table.

Example: SQLite's CBTable::DeleteRow method

This example shows the type of operations that are typically performed by a connector
to delete a row.

This method starts by ensuring that the DELETE operation is not being performed on a
read-only table and that the cursor is on a valid row. Note that the Simba SQLEngine
first invokes the class’s methods to properly position the cursor before DeleteRow is
called, so this check should always be successful.

Finally, the method delegates the deletion to its underlying table class, reduces the
cached row count, repositions the cursor to the row preceding the deleted row, and
sets a flag indicating that a deletion has occurred. The class will check this flag later on
when closing the cursor to perform proper cleanup.
void CBTable::DeleteRow()
{

ENTRANCE_LOG(m_log, "Simba::", "CBTable", "DeleteRow");
SE_CHK_INVALID_OPR("DeleteRow", m_isReadOnly);
// Ensure the cursor is positioned on a valid row.
if ((GetCurrentRow() >= m_rowCount) ||

(GetCurrentRow() < 0))
{

CBTHROW2(
DIAG_ROW_VAL_OUT_OF_RANGE,
L"CBInvalidRowNum",
NumberConverter::ConvertToWString(GetCurrentRow()

+ 1),
m_tableName);

}
// Mark the current record for deletion.
assert(m_rowCount > 0);

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
265

Simba SQLEngine

http://www.magnitude.com/

m_tableHandle.deleteRec();
// Update the row count.
--m_rowCount;
SetCurrentRow(GetCurrentRow() - 1);
m_hasDeletedRecords = true;

}

Optionally, the OnStartDMLBatch and OnFinishDMLBatchmethods can also be
implemented to handle the start and end of the DELETE operation in the result set
class. OnStartDMLBatch takes in the DMLType enum which specifies the type of
operation (DML_DELETE in this case), as well as the number of rows that will be
affected by the operation. This method will be invoked before DeleteRow. The
OnFinishDMLBatchmethod will be invoked after the DELETE operation is complete.
These methods can be used by a connector to prepare for the deletion of new rows
and to perform any post-DELETE logic in the result set class.

Handling UPDATE and DELETE Statements in an Index

A connector can handle UPDATE and DELETE statements in an index to provide
better performance in locating a row to update or delete, than when handling the
statement via a result set. This section describes the methods to implement the
handling of these statements in an index. Note that DSII indexes must be enabled in
order for the Simba SQLEngine to invoke these methods.

Note:

Indexes are not supported by the Java Simba SQLEngine.

Handling Updates

To handle an UPDATE statement in an index, a DSIExtIndex–derived class must
override and implement WriteData, and optionally OnStartRowUpdate and
OnFinishRowUpdate.

WriteData is invoked by the Simba SQLEngine when inserting a row or updating row
values. This method is responsible for writing a single column of data for a particular
row to the underlying table, and will be invoked for each column which is to be inserted
or updated.

Example:

This method delegates the writing of cell data to its underlying index table and then
instructs that object to set a flag indicating that the table has been modified.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
266

Simba SQLEngine

http://www.magnitude.com/

bool XMIndex::WriteData(simba_uint16 in_column,SqlData* in_
data,simba_signed_native in_offset,bool in_isDefault)
{

assert(!m_beforeFirstRow);
assert(m_rowPos != m_rows.end());
const bool truncated(
m_tableData.WriteData(in_column, in_data, in_offset,
in_isDefault, *m_rowPos));
m_table.SetTableModified();
return truncated;

}

The OnStartRowUpdate, OnFinishRowUpdate, OnStartDMLBatch, and
OnFinishDMLBatchmethods from DSIExtIndex can optionally be overridden and
implemented.

OnStartRowUpdate is invoked by the Simba SQLEngine when an UPDATE
operation is about to be performed, before writing data to update a row with (i.e. before
WriteData is invoked). This method does not take in any parameters but can be
optionally used by a connector to cache information that a row update is about to take
place.

OnFinishRowUpdate is invoked by the Simba SQLEngine after data has been
updated or a row inserted. This method can be used by a connector to perform any
final steps required to complete the data update or row insertion, such as committing
the data to disk.

The OnStartDMLBatch and OnFinishDMLBatchmethods can be implemented to
handle the start and end of the UPDATE operation in the index class.
OnStartDMLBatch takes in the DMLType enum which specifies the type of operation
(DML_UPDATE in this case), as well as the number of rows that will be affected by the
operation. This method will be invoked before OnStartRowUpdate. The
OnFinishDMLBatchmethod will be invoked after the UPDATE operation is
complete. These methods can be used by a connector to prepare for the updates to
rows and to perform any post-UPDATE logic in the index class.

Handling Deletes

To handle DELETE statements in an index, the DeleteRowmethod must be
overridden and implemented.

DeleteRow is invoked by the SQL Engine when a DELETE statement is encountered.
This method is responsible for performing the deletion logic for the current row on the
underlying table.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
267

Simba SQLEngine

http://www.magnitude.com/

Example:

This example shows the type of operations that are typically performed by a connector
to delete a row.
void XMIndex::DeleteRow()
{

assert(!m_beforeFirstRow);
assert(m_rowPos != m_rows.end());
std::vector<RowIdentifier>::iterator currRow = m_rowPos;
// Delete the row from the table.
m_tableData.DeleteDataRow(*currRow);
if (currRow == m_rows.begin())
{

// Remove the row from the list of rows in the index
m_rows.erase(currRow);
// Set the row position to before the first row.
m_beforeFirstRow = true;

}
else
{

// Set the position to the previous row.
--m_rowPos;
// Remove the row from the list of rows in the index.
m_rows.erase(currRow);

}
m_table.SetTableModified();

}

This method obtains a pointer to the current row and then determines whether that row
is the first row in the index’s table. If it is the first row, the code removes the row and
then sets a flag (m_beforeFirstRow) indicating that the cursor no longer points to a
row. If the row is not the first in the table, the cursor is decremented to the row
preceding the row to be deleted, and the current row is removed. Finally, a flag is set
on the underlying table to indicate that the table has been modified.

Optionally, the OnStartDMLBatch and OnFinishDMLBatchmethods can also be
implemented to handle the start and end of the DELETE operation in the index class.
OnStartDMLBatch takes in the DMLType enum which specifies the type of operation
(DML_DELETE in this case), as well as the number of rows that will be affected by the
operation. This method will be invoked before DeleteRow. The OnFinishDMLBatch
method will be invoked after the DELETE operation is complete. These methods can
be used by a connector to prepare for the deletion of new rows and to perform any
post-DELETE logic in the index class.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
268

Simba SQLEngine

http://www.magnitude.com/

Data Definition Language (DDL)

SQL Engine can support SQL Data Definition Language (DDL) CREATE and DROP
queries for tables and indexes. If your data source supports this functionality, you can
implement it in your custom connector.

Note:

SQL Engine does not support ALTER, TRUNCATE, COMMENT, or RENAME.

The following sections explains how to enable support for DDL queries in your custom
connector.

Enable Write Operations

All DDL features require the following change to enable write operations:

Call DSIPropertyUtilities::SetReadOnly() during the construction of your
CustomerConnection object, passing in false for the second parameter. This
enables write operations on tables.

Create a Table (C++ Only)

This section explains how to allow for table creation in your custom connector.

Set the DSI_CONN_CREATE_TABLE property

In the C++ SQL Engine, set the DSI_CONN_CREATE_TABLE property in your
CustomerDSIIConnection object. This can be done using the
DSIConnection::SetPropertymethod, passing DSI_CT_CREATE_TABLE as
the attribute data.

Note:

This attribute takes a bitmask that describes functionality, so if you want to
support constraints you also need to set the DSI_CT_TABLE_CONSTRAINT
bit by or’ing it with DSI_CT_CREATE_TABLE.

In the SQLite sample connector, this call is made from the SLConnection class’s
constructor, which invokes a helper method called
SetConnectionPropertyValues to set all of the properties required by the
connector.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
269

Simba SQLEngine

http://www.magnitude.com/

Implement the CreateTable method

Implement the CreateTablemethod in your CustomerDataEngine class. This
method is invoked by the Simba SQLEngine when a CREATE TABLE statement is
encountered. This method is responsible for performing the logic necessary to create
the underlying table.

Example: SQLite's CreateTable method

This method takes in a TableSpecification which contains the table information
specified in the CREATE TABLE statement (i.e. column names and constraints).
Using this information, the method creates the column metadata and places it into a
vector of FIELD4INFO objects describing each column. This is then stored on disk if
certain column types are encountered (e.g. a binary field). Otherwise, the table is
created in memory only for demonstration purposes.
void SLDataEngine::CreateTable(const
SharedPtr<TableSpecification> in_specification)
{

...
// Should have been rejected in AETree validation.
assert(in_specification->GetConstraints().empty());
// A catalog must be provided.
if (in_specification->GetCatalog().IsNull())
{

CBTHROW(DIAG_INVALID_CATALOG_NAME, L"CBEmptyCatalog");
}
// If no schema is provided, default to 'DBF'.
const simba_wstring& schema =

in_specification->GetSchema().IsNull() ? L"DBF" : in_
specification->GetSchema();

// Whether any of the column data will be stored in a
separate binary file.

bool needBinaryFile = false;
// Hold the column names (since they are NOT OWNED by the

FIELD4INFO structs).
// This will be reserve()'d to the proper size to prevent

allocations, which would
// cause to be pointing to deleted memory.
vector<simba_string> columnNames;
// Convert the IColumns into equivalent column

definitions.
assert(in_specification->GetColumns());
vector<FIELD4INFO> columnDefinitions =

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
270

Simba SQLEngine

http://www.magnitude.com/

CreateColumnMetadata(*in_specification->GetColumns(),
columnNames,needBinaryFile);

CBUtilities utilities(m_Settings);
// Create the directory structure (needed for 'new'

catalog/schema)
utilities.CreateDirectoryStructureIfNeeded(in_

specification->GetCatalog(), schema);
// Create the binary file for the table if one is needed.
if (needBinaryFile)
{

simba_wstring binaryFilePath
(utilities.GetBinaryFilePath(in_specification->GetCatalog
(),schema, in_specification->GetName()));

// Check that a file with the same name does not
already exist.

try
{

BinaryFile shouldNotExist(binaryFilePath,
OPENMODE_READONLY);

// If we get here, the file existed.
const simba_wstring fullName = in_specification-

>GetCatalog() +
L"." +
schema +
L"." +
in_specification->GetName();

CBTHROWGEN2(L"CBBinaryFileAlreadyExists",
fullName, binaryFilePath);

}
catch (ProductException&)
{

// The file did not exist. Continue.
}
// This should create the binary file.
try
{

BinaryFile binaryFile(binaryFilePath, OPENMODE_
READWRITE_NEW);

}
catch (ProductException&)
{

// Could not create the file.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
271

Simba SQLEngine

http://www.magnitude.com/

const simba_wstring fullName = in_specification-
>GetCatalog() +

L"." +
schema +
L"." +
in_specification->GetName();

CBTHROWGEN2(L"CBCannotCreateBinaryFile", fullName,
binaryFilePath);

}
}
// Finally, create the table using the API.
simba_string tablePath = utilities.GetTablePath(

in_specification->GetCatalog(),
schema,
in_specification->GetName()).GetAsPlatformString();

Data4 tableHandle;
int error = tableHandle.create(

m_Settings->m_settings,
tablePath.c_str(),
&columnDefinitions[0]);

if (!tableHandle.isValid())
{

// An error occurred creating the table.
const simba_wstring fullName = in_specification-

>GetCatalog() +
L"." +
schema +
L"." +
in_specification->GetName();

const simba_wstring errorText(e4text(error));
CBTHROWGEN2(L"CBErrorCreatingTable", fullName,

errorText);
}
// Close the table after it was successfully created.
error = tableHandle.close();
if (error < 0)
{

// An error occurred closing the table.
const simba_wstring fullName = in_specification-

>GetCatalog() +
L"." +
schema +

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
272

Simba SQLEngine

http://www.magnitude.com/

L"." +
in_specification->GetName();

const simba_wstring errorText(e4text(error));
CBTHROWGEN2(L"CBErrorClosingTable", fullName,

errorText);
}

}

By default, column types specified in the CREATE TABLE statement are resolved by
DSIExtColumnFactory using the type names and SQL types returned by the Type
Info metadata source’s TYPE_NAME and DATA_TYPE columns respectively. An
exception is made for interval types, which are determined according to the rules
outlined in Interval Conversions.

Add Additional Types (Optional)

If you want to add additional types you can subclass DSIExtColumnFactory. If you
require different behavior, you can implement IColumnFactory directly. Doing so
will enable you to override the CreateColumnmethod (which is invoked during table
creation) to perform custom logic during the creation of columns.

To create a column factory:

1. Derive a class from DSIExtColumnFactory and override
CreateCustomColumn or implement the IColumnFactory interface directly,
and override the CreateColumnmethod. This method will be invoked by the
Simba SQLEngine for each column to be created in the table. This method is
responsible for returning a pointer to an IColumn object which provides all the
information about the column to the SQLEngine. Connectors can also use this
method to check and verify that the requested column type and parameters
match what the connector is able to support.

Example: SQLite's CBColumnFactory::CreateCustomColumn method

The method is provided with numerous parameters such as the table and
column names. The method starts by performing a few basic checks on the
column and related information passed in. It then creates an
SqlTypeMetadata object to store the information about the SQL type for which
a column is to be created, as well as a DSIColumnMetadata object to store
information about the column.

Then, this example shows how checks are made for a numeric column type to
ensure that the type parameters provided match what the connector can handle.
Note that your own implementation likely requires additional checks. Once these

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
273

Simba SQLEngine

http://www.magnitude.com/

checks pass, a new DSIResultSetColumn object is constructed using the
SqlTypeMetadata and DSIColumnMetadata objects.
Simba::DSI::IColumn* CBColumnFactory::CreateCustomColumn(
const simba_wstring& in_catalogName,
const simba_wstring& in_schemaName,
const simba_wstring& in_tableName,
const simba_wstring& in_columnName,
const simba_wstring& in_typeName,
const std::vector<simba_wstring>& in_typeParameters,
Simba::DSI::DSINullable in_nullable)
{

// SQLite allows column names which are at most 10
characters.
if (in_columnName.GetAsPlatformString().length() >
10)
{

CBTHROW1(DIAG_SYNTAX_ERR_OR_ACCESS_
VIOLATION, L"CBColumnNameTooLong", in_
columnName);

}
else if (0 == in_columnName.GetLength())
{

CBTHROW(DIAG_SYNTAX_ERR_OR_ACCESS_
VIOLATION, L"CBEmptyColumnName");

}
// Check that the column name has the right prefix
for its type.
CBTypeUtilities::CheckColumnPrefix(in_
columnName.GetAsPlatformString(), sqlType);
AutoPtr<SqlTypeMetadata> typeMeta
(SqlTypeMetadataFactorySingleton::GetInstance()-
>CreateNewSqlTypeMetadata(sqlType));
AutoPtr<DSIColumnMetadata> columnMeta(new
DSIColumnMetadata());
columnMeta->m_catalogName = in_catalogName;
columnMeta->m_schemaName = in_schemaName;

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
274

Simba SQLEngine

http://www.magnitude.com/

columnMeta->m_tableName = in_tableName;
columnMeta->m_name = in_columnName;
columnMeta->m_unnamed = false;
columnMeta->m_label = in_columnName;
columnMeta->m_nullable = in_nullable;
// Set default, will be overwritten for variable-
length types.
columnMeta->m_charOrBinarySize =
SqlDataTypeUtilitiesSingleton::GetInstance()-
>GetColumnSizeForSqlType(sqlType);
// Deal with type parameters.
switch (sqlType)
{

....
case SQL_NUMERIC:
{

if (in_typeParameters.size() > 2)
{

CBTHROW1(DIAG_SYNTAX_ERR_
OR_ACCESS_VIOLATION,
L"CBTooManyTypeParams",
in_columnName);

}
if (in_typeParameters.size() >=
1)
{

try
{

simba_uint64
precision =
NumberConverter:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
275

Simba SQLEngine

http://www.magnitude.com/

:ConvertWStringT
oUInt64(in_
typeParameters
[0]);
if (precision >
SIMBA_INT16_MAX)
{

CBTHROW3
(
DIAG_
SYNTAX_
ERR_OR_
ACCESS_
VIOLATIO
N,
L"CBPrec
isionToo
Large",
in_
typePara
meters
[0],
NumberCo
nverter:
:Convert
UInt32To
WString
(SIMBA_
INT16_
MAX),
in_

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
276

Simba SQLEngine

http://www.magnitude.com/

columnNa
me);

}
typeMeta-
>SetPrecision
(static_
cast<simba_int16>
(precision));

}
catch (...)
{

CBTHROW2(
DIAG_SYNTAX_ERR_
OR_ACCESS_
VIOLATION,
L"CBCannotConver
tPrecision",
in_typeParameters
[0],
in_columnName);

}

}
if (in_typeParameters.size() ==
2)
{

try
{
simba_int64 scale =
NumberConverter::ConvertW
StringToInt64(in_
typeParameters[1]);

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
277

Simba SQLEngine

http://www.magnitude.com/

if (scale > typeMeta-
>GetPrecision())
{

CBTHROW3(
DIAG_SYNTAX_ERR_
OR_ACCESS_
VIOLATION,
L"CBScaleTooLarg
e",
in_typeParameters
[1],
NumberConverter:
:ConvertUInt32To
WString(typeMeta-
>GetPrecision()),
in_columnName);
}
typeMeta-
>SetScale(static_
cast<simba_int16>
(scale));

}
catch (...)
{

CBTHROW2(
DIAG_SYNTAX_ERR_
OR_ACCESS_
VIOLATION,
L"CBCannotConver
tScale",
in_typeParameters
[1],

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
278

Simba SQLEngine

http://www.magnitude.com/

in_columnName);

}

}
break;
}
...

}

return new DSIResultSetColumn(typeMeta.Detach(),
columnMeta.Detach());

}

2. Derive a class from DSIExtCustomBehaviorProvider and override
InitializeColumnFactory to create your column factory. The following
code snippet shows how uses this method to create a CBColumnFactory
object:

Example:
void CBCustomBehaviorProvider::InitializeColumnFactory
(DSIExtSqlDataEngine* in_dataEngine)
{

m_columnFactory = new CBColumnFactory(in_dataEngine,
m_isODBC3);
}

When using the Simba SQLEngine, override is
SqlCustomBehaviourProvider.initColumnFactory(SqlDataEngine
dataEngine).

3. In your derived DataEngine class, override the
CreateCustomBehaviorProvidermethod to return the
CustomBehaviourProvider class from Step 2.

4. Example:SQLite’s SLDataEngine class
AutoPtr<Simba::SQLEngine::DSIExtCustomBehaviorProvider>
SLDataEngine::CreateCustomBehaviorProvider()
{

return
AutoPtr<Simba::SQLEngine::DSIExtCustomBehaviorProvider>(

new CBCustomBehaviorProvider(IsODBCVersion3()));
}

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
279

Simba SQLEngine

http://www.magnitude.com/

Once these steps have been completed, the CreateColumnmethod in your
ColumnFactory class will be invoked for each table column.

Drop A Table (C++ Only)

This section explains how to handle table dropping.

Set the DSI_CONN_DROP_TABLE

In the C++ SQL Engine, set the DSI_CONN_DROP_TABLE property in your
CustomerDSIIConnection object. This can be done using the
DSIConnection::SetPropertymethod passing in DSI_DT_DROP_TABLE as the
attribute data. In SQLite, this call is made from the SLConnection class’s constructor
which invokes a helper method called SetConnectionPropertyValues to set all of
the properties required by the connector.

Implement the DropTable method

Add and implement the DropTablemethod in your CustomerDataEngine class.
This method will be invoked by the Simba SQLEngine when a DROP TABLE query is
encountered. This method is responsible for performing all logic necessary to drop the
specified table from the data source.

Example: SQLite's SLDataEngine::DropTable implementation

This example method starts by performing the calls necessary to temporarily open
files in exclusive mode and then checks to ensure that the specified table exists using
a helper class called CBUtilities. If so, the method attempts to open the binary file
containing the table data in exclusive mode so that no other processes can interfere
with the deletion of the file. If the open succeeds, the method then deletes the binary
file. Note that the method uses the low level Data4 class which handles file operations
for data files.
void SLDataEngine::DropTable(

const simba_wstring& in_catalogName,
const simba_wstring& in_schemaName,
const simba_wstring& in_tableName,
Simba::SQLEngine::DSIExtTableDropOption in_dropOption)

{
assert(TABLE_DROP_UNSPECIFIED == in_dropOption);
// Temporarily change the settings to open files in

exclusive mode.
TemporarySettingsOverride override(m_Settings->m_

settings);
override.OverrideAccessMode(OPEN4DENY_RW);

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
280

Simba SQLEngine

http://www.magnitude.com/

override.OverrideReadOnly(0);
CBUtilities utilities(m_Settings);
simba_wstring schemaName(L"");
if (utilities.DoesTableExist(

m_Settings->m_dbfPath,
in_catalogName,
in_schemaName,
in_tableName,
schemaName))

{
simba_wstring tablePath =

utilities.GetTablePath(in_catalogName, schemaName,
in_tableName);

// Open the table exclusively
Data4 tableHandle;
AutoHandleCloser<Data4> tableCloser(tableHandle);
int error = tableHandle.open(

m_Settings->m_settings,
tablePath.GetAsPlatformString().c_str());

if (!tableHandle.isValid())
{

tableCloser.CancelClose();
const simba_wstring table =

in_catalogName + L"." + in_schemaName + L"." +
in_tableName;

const simba_wstring errorText(e4text(error));
CBTHROWGEN2(L"CBCannotOpenDropTable", table,

errorText);
}

// Drop the table
error = tableHandle.remove();
if (error < 0)
{

const simba_wstring table =
in_catalogName + L"." + in_schemaName + L"." +

in_tableName;
const simba_wstring errorText(e4text(error));
CBTHROWGEN2(L"CBCannotDropTable", table,

errorText);
}
// Dropping the table succeeded.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
281

Simba SQLEngine

http://www.magnitude.com/

tableCloser.CancelClose();
// Delete the binary file if there is one.
utilities.DeleteBinaryFile(in_catalogName, schemaName,

in_tableName);
}
else
{

const simba_wstring table =
in_catalogName + L"." + in_schemaName + L"." + in_

tableName;
CBTHROW1(DIAG_BASE_TABLE_OR_VIEW_MISSING,

L"CBDropNonExistentTable", table);
}

}

Create an Index (C++ Only)

Use the following steps to handle index creation:

1. Set the DSI_CONN_DDL_INDEX property in your CustomerDSIIConnection
object. This can be done using the DSIConnection::SetPropertymethod
passing in DSI_DI_CREATE_INDEX as the attribute data. In the SQLite sample,
this call is made from the SLConnection class’s constructor which invokes a
helper method called SetConnectionPropertyValues to set all of the
properties required by the connector.

Note:

If index dropping is to also be supported as described in the next
subsection, DSI_DI_CREATE_INDEX can be evaluated with DSI_DI_
DROP_INDEX using a bitwise OR operator ‘|’ ”.

2. Implement the CreateIndexmethod in your CustomerTable class. This
class is derived from DSIExtResultSet, which handles all table operations.
The CreateIndexmethod is invoked by the Simba SQLEngine when a
CREATE INDEX query is encountered. This method is responsible for creating
an index for the specified columns.

Example: SQLite's CBTable::CreateIndex method

Note that this method doesn’t create a real index. Rather, it just maintains a list of
indexes the tables have to show the consumption of the parameters passed to
CreateIndex.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
282

Simba SQLEngine

http://www.magnitude.com/

The method starts by checking if an index type was specified as part of the
query. If so, it ensures that the specified index type is supported by the connector
and that the index doesn’t already exist. It then builds up an index specification
(a string containing index information) and iterates through the columns passed
in, adding column information to that string. Finally, it adds this string to an index
file.
void CBTable::CreateIndex(

const simba_wstring& in_name,
std::vector<DSIExtIndexColumn>& in_columns,
const simba_wstring& in_type,
bool in_isUnique)

{
assert(!in_columns.empty());
simba_wstring indexType = L"OTHER";
if (!in_type.IsNull())
{

if (!in_type.IsEqual(L"BTREE", false) &&
!in_type.IsEqual(L"CLUSTERED", false) &&
!in_type.IsEqual(L"CONTENT", false) &&
!in_type.IsEqual(L"HASHED", false) &&
!in_type.IsEqual(L"OTHER", false))

{
CBTHROW1(DIAG_SYNTAX_ERR_OR_ACCESS_VIOLATION,

L"CBInvalidIndexType", in_type);
}
indexType = in_type;
indexType.ToUpper();

}
if (SIMBA_NPOS != in_name.Find(L"\t"))
{

CBTHROW1(DIAG_SYNTAX_ERR_OR_ACCESS_VIOLATION,
L"CBInvalidIndexName", in_name);

}
// Check that an index with that name doesn't exist

already.
if (NULL != m_indexMetaList.GetIndexMetadata(in_name))
{

// This should never happen, as the SDK checks for
this, and

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
283

Simba SQLEngine

http://www.magnitude.com/

// the index list does not get updated
asynchronously.

assert(false);
}
// Initialize the index spec with the column-

independent information.
simba_string indexSpec =

in_name.GetAsPlatformString() +
'\t' +
indexType.GetAsPlatformString() +
'\t' +
(in_isUnique ? 'Y' : 'N');

// Add each column to the index spec.
std::vector<DSIExtIndexColumn>::iterator it = in_

columns.begin();
std::vector<DSIExtIndexColumn>::iterator end = in_

columns.end();
for (;it != end; ++it)
{

// Find the ordinal of the column in this table.
DSIExtIndexColumn& indexColumn = *it;
simba_wstring indexColName;
indexColumn.GetName(indexColName);
simba_uint16 columnOrdinal = GetColumnOrdinal

(indexColName);
if (SE_INVALID_COLUMN_NUMBER == columnOrdinal)
{

// This should never happen, as this is
checked by the SDK.

assert(false);
}
indexSpec +=

('\t' +
NumberConverter::ConvertUInt16ToString

(columnOrdinal) +
'\t' +
((indexColumn.GetSortOrder() == DSIEXT_SORT_

DESCENDING) ? 'N' : 'Y'));
}
if (m_indexFile.IsNull())

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
284

Simba SQLEngine

http://www.magnitude.com/

{
// This means that there was no index file upon

opening the table, so create one.
CBUtilities utilities(m_Settings);
simba_wstring indexFileName(

utilities.GetIndexFilePath(m_catalogName, m_
schemaName, m_tableName));

m_indexFile.Attach(new TextFile(indexFileName,
OPENMODE_WRITE_NEW));

}

m_indexFile->WriteLine(indexSpec);
}

Drop an Index (C++ Only)

1. Set the DSI_CONN_DDL_INDEX property in your CustomerDSIIConnection
object. This can be done using the DSIConnection::SetPropertymethod
passing in DSI_DI_DROP_INDEX as the attribute data. In SQLite, this call is
made from the SLConnection class’s constructor which invokes a helper
method called SetConnectionPropertyValues to set all of the properties
required by the connector.

Note:

If index creation is to also be supported as described in the previous
subsection, DSI_DI_DROP_INDEX can be evaluated with DSI_DI_
CREATE_INDEX using a bitwise OR operator ‘|’ ”.

2. Implement the DropIndexmethod in your CustomerTable class. This method
is invoked by the Simba SQLEngine when a DROP INDEX query is encountered
and is responsible for removing the specified index from the table.

Example: SQLite's CBTable::DropIndex method

The method starts by ensuring that a valid index has been provided by the SDK
and if so, closes the underlying index file. If the table only has one index (i.e. this
is the only index that has been created), then the index file is deleted. Otherwise,
the remaining indexes (strings containing index information) are cached, the file
is deleted, then a new file is created and the remaining indexes added back in to
the new file. Finally, the dropped index is removed from the list of cached
indexes.
void CBTable::DropIndex(const IIndexMetadata* in_index)
{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
285

Simba SQLEngine

http://www.magnitude.com/

assert(in_index);
// Check that this is a valid index.
const simba_size_t numIndexes = m_

indexMetaList.GetIndexCount();
bool found = false;
simba_size_t indexIndex = -1;
for (simba_size_t i = 0; i < numIndexes; ++i)
{

if (m_indexMetaList.GetIndexMetadata(i) == in_
index)

{
found = true;
indexIndex = i;
break;

}
}
if (!found)
{

// This should never happen, as this is checked
for by the SDK, and the index list

// does not change asynchronously.
assert(false);

}
// If the index was found, we must have opened the

index file to populate m_indexes.
// Close it so that we can delete the file.
m_indexFile.Attach(NULL);
if (1 == numIndexes)
{

// This was the only index, so we can simply
delete the index file.

CBUtilities utilities(m_Settings);
utilities.Delete(utilities.GetIndexFilePath(m_

catalogName, m_schemaName, m_tableName));
}
else
{

// We have to remake the file, but remove the line
with the index in question.

assert(1 < numIndexes);

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
286

Simba SQLEngine

http://www.magnitude.com/

vector<IIndexMetadata*> remainingIndexes;
remainingIndexes.reserve(numIndexes - 1);
// Copy over every index other than the one to be

deleted.
for (simba_size_t i = 0; i < numIndexes; ++i)
{

IIndexMetadata* indexMeta = m_
indexMetaList.GetIndexMetadata(i);

if (indexMeta != in_index)
{

remainingIndexes.push_back(indexMeta);
}

}
// Delete the index file.
CBUtilities utilities(m_Settings);
utilities.Delete(utilities.GetIndexFilePath(m_

catalogName, m_schemaName, m_tableName));
// Recreate it so we can add the remaining

indexes.
OpenIndexFile(false, true);
assert(!m_indexFile.IsNull());
for (vector<IIndexMetadata*>::iterator it =

remainingIndexes.begin();
it != remainingIndexes.end();
++it)

{
m_indexFile->WriteLine(IndexMetaToIndexSpec

(*it));
}

}
// Remove the dropped index from our list of existing

indexes.
m_indexMetaList.RemoveIndexMetadata(indexIndex);

}

Support for Indexes

If your data store supports indexes, the C++ SimbaSQL Engine enables you to use
these indexes in your custom connector code. Using indexes improves the speed of
data retrieval.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
287

Simba SQLEngine

http://www.magnitude.com/

Note:

The Java version of the SQL Engine does not support indexes. You can build a
custom JDBC connector that supports your data store's indexes by using the
JNIDSI bridge to the C++ Simba SDK.

SQL Engine uses indexes following ways:

l Index-only scan

If a single DSIExtIndex object contains the data for all needed columns, then
the SQL Engine can scan only the index in order to retrieve data. Retrieving data
from rows in the result set is not necessary. The SDK may use the index without
using the indexing capability of the index. Simba SDK can also use the index for
filtering or joining while performing an index-only scan.

l Bookmark usage scan

If a data source can use bookmarks, then a DSIExtIndex can be used to
retrieve a set of bookmarks for rows in the parent table that satisfy a filter.

To control the use of index-only scans, set the property DSIEXT_DATAENGINE_
PREFER_INDEX_ONLY_SCANS to Y. This tells the SQL Engine to attempt an index-
only scan whenever possible. An index generally contains less data than the parent
table, and therefore can be traversed more efficiently.

If scanning an index is slower than scanning a table, or for other design reasons, then
set the DSIEXT_DATAENGINE_PREFER_INDEX_ONLY_SCANS property to the
value N. When set to N, index-only scans are still performed if the scan satisfies one or
more filters. If the DSIEXT_DATAENGINE_USE_DSII_INDEXES property is set to N,
then the DSIEXT_DATAENGINE_PREFER_INDEX_ONLY_SCANS property is not
used.

If you inherit from DSIExtSimpleResultSet, to enable the use of indexes you need
only to implement GetBookmarkSize, GetBookmark and GotoBookmark in
addition to your DSIExtIndex implementation.

Information on implementing indexes can be found in the section Support for Indexes.
See also to the Simba SDK C++ API Reference for details on how to implement Simba
SDK usage of data store indexes.

Implementation Overview

The use of indexes is implemented as follows:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
288

Simba SQLEngine

http://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference/
http://www.magnitude.com/

l Use of indexes is enabled and disabled using the DSIEXT_DATAENGINE_
USE_DSII_INDEXES property. If the property is set to N, then use of indexes is
disabled. If the property is set to Y, then use of indexes is enabled. By default,
the use of indexes is disabled.

l Information about indexes that exist in relation to a DSIExtResultSet result
set object are retrieved using the DSIExtResultSet::GetIndexesmethod.

Note:

The IIndexMetadata objects returned from GetIndexesmust be
subclasses of IUseableIndexMetadata or the SQLEngine cannot use the
indexes, except for the purposes of SQLStatistics.

l Based on the information retrieved about available indexes using
DSIExtResultSet::GetIndexes, indexes are retrieved as DSIExtIndex
objects using DSIExtResultSet::OpenIndex.

Note:

When the DSIEXT_DATAENGINE_USE_DSII_INDEXES property is set to N,
then DSIExtResultSet::OpenIndex is not called.

l The columns found in a DSIExtIndex object can be ascertained using
IUseableIndexMetadata::GetIndexColumns,
IUseableIndexMetadata::GetIncludedColumns, or
IUseableIndexMetadata::GetTableColumnToIndexColumnMap.

l GetIndexColumns returns the column objects on which an index is
searchable. For example, if a given index can be used to efficiently satisfy
a filter involving a column, then that column should appear in the collection
returned by this method. Note that the order of columns returned is
significant if the index is a sorted index.

l GetIncludedColumns returns the column indices for which the SDK can
call DSIExtIndex::RetrieveData (i.e. the column indicies for which
data can be retrieved from the index as opposed to the associated
DSIExtResultSet). Note that this is usually a subset of the columns that
would be returned from GetIndexColumns and this subset can
sometimes be empty. When all columns required for the current query
appear in this set, it can allow the SDK to retrieve data from the index
instead of from the table, which can be more efficient in some cases. It can
also help efficiency when there is a condition on one of the included
columns which cannot be directly satisfied by the index (e.g. ‘C1 LIKE

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
289

Simba SQLEngine

http://www.magnitude.com/

%ness’), as it allows the SDK to evaluate the filter before looking up the
row in the associated DSIExtResultSet.

l GetTableColumnToIndexColumnMap returns a mapping from columns
in the parent DSIExtResultSet to columns included (see
GetIncludedColumns above) in this index. For example, given a column
index i (with respect to the parent result), if the map contains an entry for i,
then dsiextresult.RetrieveData(i, …) retrieves data from the
same column as dsiextindex.RetrieveData
(indexMeta.GetTableColumnToIndexColumnMap()[i], …).

l SQL Engine can take advantage of an index’s structure to reduce the number of
rows retrieved from the index.

This functionality will be explained further in the following sections.

Index-Only Scan Example

In this example, the SQL Engine is executing the following query:

SELECT C1 FROM T1WHERE C1 = 5

The column T1.C1 has type SQL_INTEGER (signed). Also, a DSII index that has the
capability of retrieving data from T1.C1 exists and is named IDX1.

From the perspective of the DSII, the following steps occur:

1. The SDK opens the table T1 via a call to
DSIExtSqlDataEngine::OpenTable, creating the object <A>.

2. The SDK requests information related to T1’s indexes by calling
DSIExtResultSet::GetIndexes on <A>.

3. The SDK opens the index IDX1 by passing in the appropriate
IUseableIndexMetadata* into DSIExtResultSet::OpenIndex on <A>,
as well as values of false for the in_mustKeepOrder and in_
mustSupplyBookmarks parameters. The SDK shall not attempt to retrieve
bookmarks from the index and the order of rows retrieved is irrelevant for the
example query. Calling DSIExtResultSet::OpenIndex creates and returns
a DSIExtIndex object representing the index IDX1.

4. The SDK searches IDX1 by calling DSIExtIndex::Seek on , passing in a
DSIExtSeekCondition object <C>, with <C>.GetEqualitySegments
returning a vector of size 1 containing the simba_int32 value 5 wrapped in a
DSIExtKeySegment, and <C>.HasLastColumnCondition returning false.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
290

Simba SQLEngine

http://www.magnitude.com/

Note:

For more details on seek conditions, see Support for Indexes.

5. After the call to DSIExtIndex::Seek, calling DSIExtIndex::MoveNext
followed by DSIExtIndex::RetrieveData in a loop steps through ,
returning the values in the column C1 for rows satisfying the condition T1.C1 = 5.
In an index-only scan, acts similarly to an IResult object.

6. The SDK may also call DSIExtIndex::Reset or DSIExtIndex::Seek.

For a flow chart illustrating methods in the DSIExtIndex class, see the DSIExtIndex
class in the C++ API Reference Guide.

The following sequence diagram illustrates the general steps of the index-only scan
example.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
291

Simba SQLEngine

http://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference/a00209.html
http://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference/index.html
http://www.magnitude.com/

Bookmark Usage Example

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
292

Simba SQLEngine

http://www.magnitude.com/

If an index does not contain the data for all needed columns, then the SQL Engine
accesses table data using bookmarks. If an index is unable to provide bookmarks,
then the index is ineligible for use.

Consider the following example, where the SQL Engine is executing the following
query:

SELECT D1 FROM T1WHERE C1 = 5

The column T1.C1 has type SQL_INTEGER (signed). Also, a DSII index on T1.C1
named IDX1 is capable of retrieving bookmarks.

From the perspective of the DSII, the following steps occur:

1. The SDK opens the table T1 via a call to
DSIExtSqlDataEngine::OpenTable, creating the object <A>.

2. The SDK requests information related to T1’s indexes by calling
DSIExtResultSet::GetIndexes on <A>.

3. The SDK opens the index IDX1 by passing in the appropriate
IUseableIndexMetadata* into DSIExtResultSet::OpenIndex on <A>,
as well as a value of false for the in_mustKeepOrder parameter and a value
of true for the in_mustSupplyBookmarks parameter. The SDK needs to
retrieve bookmarks from the index and the order of rows retrieved is irrelevant for
the example query. Calling DSIExtResultSet::OpenIndex creates and
returns a DSIExtIndex object representing the index IDX1.

4. The SDK searches IDX1 by calling DSIExtIndex::Seek on , passing in a
DSIExtSeekCondition object <C>, with <C>.GetEqualitySegments
returning a vector of size 1 containing the simba_int32 value 5 wrapped in a
DSIExtKeySegment, and <C>.HasLastColumnCondition returning
false.

Note:

For more details on seek conditions, see Support for Indexes.

5. The SDK calls DSIExtResultSet::SetBookmarkSource on <A>, passing in
a DSIExtBookmarkSource object <D>. <D> is an opaque iterator for
bookmarks that internally retrieves bookmarks from .

6. Calling DSIExtResultSet::Move positions the cursor to the table row
indicated by the next bookmark retrieved from <D>. The DSIExtResultSet
calls DSIExtBookmarkSource::MoveNext on <D> followed by
DSIExtBookmarkSource::GetBookmark to produce a pointer <E> to the
bookmark for the next row satisfying the condition T1.C1 = 5. Repeating this step

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
293

Simba SQLEngine

http://www.magnitude.com/

in a loop facilitates retrieving the value in column T1.D1 for all records satisfying
the condition T1.C1 = 5.

Note:

When a bookmark source is set, the SDK will only call Move with a direction of
DSI_DIR_NEXT. If DSIExtBookmarkSource::MoveNext returns true,
then there is a bookmark to retrieve. Also, when calling
DSIExtResultSet::Reset on a result set having a bookmark source,
DSIExtBookmarkSource::Resetmust also be called. As an optimization,
DSIExtBookmarkSource::Reset returning false indicates that the same
bookmarks that were returned for the last traversal through the bookmark
source will be returned for the next traversal so that if rows are cached, then
the cache may be used instead of using the bookmark source directly.

For joins, Seek is called multiple times—once for each row of an outer relation during a
join operation. Sorting combined lists of bookmarks based on a well-defined
IBookmarkComparator object ensures that rows are retrieved as efficiently as
possible.

For more information on sorting lists of bookmarks, see Support for Indexes.

The following sequence diagram shows how bookmarks are used:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
294

Simba SQLEngine

http://www.magnitude.com/

Understanding Bookmarks

A bookmark is an opaque iterator that identifies a row. Lists of bookmarks that satisfy
query conditions, retrieved from an index, can be sorted based on the

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
295

Simba SQLEngine

http://www.magnitude.com/

IBookmarkComparator object that the index exposes.

If IBookmarkComparator::ShouldAlwaysSortBookmarks() is true, then
bookmarks are sorted. You must define an order for bookmarks via
IBookmarkComparator. The order for bookmarks must be a strict total ordering.
Ordering is defined per DSIExtResultSet and must be consistent in the context of a
single query. While not essential, the ordering should facilitate retrieving bookmarks
from a table as efficiently as possible.

If IBookmarkComparator::ShouldAlwaysSortBookmarks() is false, then
bookmarks are not sorted based on the IBookmarkComparator object. Bookmarks
may be sorted by coincidence, for example if an intersection of bookmark sets is
performed.

To avoid unnecessary sorts, indicate whether a specific index naturally produces
bookmarks in IBookmarkComparator order (as long as the in_mustKeepOrder
flag was set on construction of the index) via IUseableIndexMetadata::
IsInBookmarkComparatorOrder()

IBookmarkComparator::GetBookmarkSize() gets the size, in bytes, of
bookmarks that the IBookmarkComparator object compares.

DSIExtBookmarkSource::GetBookmark() retrieves a pointer to data for the
current bookmark.

The DSII also must implement DSIExtResultSet::GetBookmarkSize() and
DSIExtResultSet::GetBookmark()

DSIExtResultSet::GotoBookmark()moves the cursor to the row identified by
the given bookmark.

Last Column Conditions for Sorted Indexes

A last column condition is a condition applied to the next column of an index, after the
columns taken care of by the equality conditions. When searching indexes by calling
DSIExtIndex::Seek(), the SDK will only use last column conditions if an index is
sorted.

If DSIExtSeekCondition::HasLastColumnCondition() returns true, then you
may retrieve the last column condition using
DSIExtSeekCondition::GetLastColumnCondition().

Important: If a DSIExtSeekCondition seek condition object passed to
DSIExtIndex::Seek() contains a last column condition, then the last column
condition must be satisfied or an exception must be thrown. Otherwise, an incorrect
result set may return.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
296

Simba SQLEngine

http://www.magnitude.com/

The following last column conditions are defined in the
DSIExtColumnConditionType.h file:

l COLUMN_CONDITION_IS_NOT_NULL—Corresponds to “C1 IS NOT NULL” in
SQL or, in some cases, is used for range queries when conversions overflow or
underflow. When present, the index should filter out rows with null values for the
associated column.

l COLUMN_CONDITION_IS_IN_RANGE—A range condition can contain either a
minimum endpoint, a maximum endpoint, or both. If a range condition contains a
minimum endpoint, then the index should filter out rows in which the associated
column has a value less than the endpoint. If the minimum endpoint is exclusive,
then the index should also filter out rows where the associated column has a
value equal to the endpoint. If a range condition contains a maximum endpoint,
then the index should filter out rows in which the associated column has a value
greater than the endpoint. If the maximum endpoint is exclusive, then the index
should filter out rows where the associated column has a value equal to the
endpoint.

l COLUMN_CONDITION_MINIMUM—Selects only the row having the lowest
value for the given column, within the subset of rows matching any other equality
conditions. COLUMN_CONDITION_MINIMUM is currently unused.

l COLUMN_CONDITION_MAXIMUM—Selects only the row having the highest
value for the given column, within the subset of rows matching any other equality
conditions. COLUMN_CONDITION_MAXIMUM is currently unused.

l COLUMN_CONDITION_INVALID—Indicates that no last column condition is set.

IUseableIndexMetadata::IsConditionTypeSupported() returns true if a
DSIExtColumnConditionType is applicable to a specific index column.

IUseableIndexMetadata::CanIndexOnNull() returns true if a specific index
column supports indexing IS NULL. IS NULL conditions are specified as an equality
condition, but the DSIExtKeySegment is NULL.

For more details on conditions that may apply to the last column of a sorted index, see
the Simba SDK C++ API Reference.

Note:

For non-sorted indexes, the seek condition on every column in the index is an
equality condition.

Current Limitations

In the current version of Simba SDK, the use of indexes is limited as follows:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
297

Simba SQLEngine

http://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference/
http://www.magnitude.com/

l SQL OR, IN and LIKE operators are not supported.
l Indexes are not used for SQL UPDATE or DELETE statements.
l User-defined and interval SQL data types are not supported.
l If the index does not support IS_NOT_NULL, then some range filters are not
supported.

l In some cases, table reordering may cause indexes not to be used.
l Indexes can be used to apply filters and joins in a query that contains sorts or
aggregations, but indexes cannot be used to perform sorts or aggregations.

Further enhancements and new features will be introduced in upcoming releases of
Simba SDK.

Implementing Indexes

This section describes how to implement the most complex parts of a data store index
using the SDK. Note that implementation can vary depending on the DSII developer’s
design decisions.

Before the SQLEngine is able to use a data store index, it needs to receive information
about all of the data store indexes available for a table and its columns. The
SQLEngine achieves this by calling the GetIndexes()method, defined in the
abstract DSIExtResultSet class that the data source table class implements.

This method is expected to return a reference to an IIndexMetadataList object.
This list must be composed of objects derived from the IUseableIndexMetadata
abstract class, one for each data store index linked to the table. Each of these
IUseableIndexMetadata objects contains general information about the index
(e.g. the name of the index, flags to indicate if the index is sorted and unique, etc.) and
metadata information for all the columns that are part of this index.

Step 1: Create the List of Table Columns and Their Related Metadata

Note:

The functionality in this step may have been implemented elsewhere in your
DSII table class since it is necessary in order to use the table itself (e.g. to
perform a SELECT). In this case, if you save the column list as a member
variable then you should be able to reuse this list in Step 2 and onward.

A. Add the following member variable to your table class:

DSIResultSetColumns m_tableColumns;

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
298

Simba SQLEngine

http://www.magnitude.com/

B. In your table object’s constructor, build the list of table column metadata. For
each column of your table, do the following:

i. Determine the characteristics of the column and populate the following
variables:

simba_wstring catalogName = <catalog name of the
table>;
simba_wstring schemaName = <schema name of the
table>;
simba_wstring tableName = <name of the table>;
simba_wstring columnName = <name of the column>;
simba_int16 sqlType = <SQL type corresponding to the
internal type of your column>;
bool isSigned = <true if the column is signed or
false otherwise>;
simba_int16 precision = <precision for the column>;
simba_int16 scale = <scale for the column>;
DSINullable nullable = <see enumerated values for
DSINullable and set accordingly>;

ii. Create a new DSIColumnMetadata object and initialize all of its
attributes. The following example shows most of the attributes (see
“Include/DSI/Client/DSIColumnMetadata.h” for the full list of
attributes and determine which value to put into each depending on your
DSII):

AutoPtr<DSIColumnMetadata> columnMetadata;
columnMetadata->m_catalogName = catalogName;
columnMetadata->m_schemaName = schemaName;
columnMetadata->m_tableName = tableName;
columnMetadata->m_name = columnName;
columnMetadata->m_label = columnName;
columnMetadata->m_autoUnique = false;
columnMetadata->m_caseSensitive = true;
columnMetadata->m_nullable = nullable;
columnMetadata->m_unnamed = false;
columnMetadata->m_updatable = DSI_WRITE;

iii. Create a SqlTypeMetadata object and initialize all of its attributes (see
“Include/Support/TypedDataWrapper/SqlTypeMetadata.h” for
details about these attributes):

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
299

Simba SQLEngine

http://www.magnitude.com/

AutoPtr<SqlTypeMetadata> sqlTypeMetadata(
SqlTypeMetadataFactorySingleton::GetInstance()->
CreateNewSqlTypeMetadata(sqlType, !isSigned));
if (sqlTypeMetadata->IsDateTimeType() ||
sqlTypeMetadata->IsExactNumericType()) {
sqlTypeMetadata->SetPrecision(precision);
}
if (sqlTypeMetadata->IsExactNumericType()){
sqlTypeMetadata->SetScale(precision);
}
if (sqlTypeMetadata->IsCharacterOrBinaryType()){
sqlTypeMetadata->SetLengthOrIntervalPrecision(len);
/// VERY IMPORTANT STEP: it is necessary to set the
length
/// of the DSIColumnMetadata object for variable size
/// types otherwise the column is considered having a
size
/// of 0 bytes.
columnMetadata->m_charOrBinarySize = len;
}

iv. Create a DSIResultSetColumn object from the columnMetadata and
sqlTypeMetadata objects (it is necessary to detach the auto pointers of
both objects to transfer ownership to the column object, since they are
destroyed once the method exits, resulting in the column object
referencing an invalid object):

AutoPtr<IColumn> column(new DSIResultSetColumn
(sqlTypeMetadata.Get(),columnMetadata.Get()));
sqlTypeMetadata.Detach();
columnMetadata.Detach();

v. Add the column object to the list of columns and detach it:

m_tableColumns.AddColumn(column.Get());
column.Detach();

At this point, the list of table columns is available during the life of the table object.
Since it is under control of an AutoVector, this list and all of its elements are
automatically destroyed during the destruction of the table object.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
300

Simba SQLEngine

http://www.magnitude.com/

Step 2: Implement the IUseableIndexMetadata class

Write a class that implements the IUseableIndexMetadata class. An instance of
this class represents the metadata of one index. Therefore it has to reference the
DSIResultSetColumn objects representing the column of this index, though
implementation of this interface will depend on your data source.

For a possible implementation of this class, see Sample Index Implementation. While
a DSII developer might implement it differently, the following are some of the important
points:

A. This class contains CreatePrimaryKeyInstance() for creating a primary
index, and CreateIndexInstance() for other indexes. If primary keys are
handled the same as other indexes, or there are no primary keys, only one
factory method may be needed or the construction of the instance can be
performed in the constructor.

B. The objective of the constructor factories is to create the link between the index
columns and the table columns. The two most significant parameters received
by the factories are:

I. in_indexColumns (type IColumns): the list of table columns. When
creating an index for a specific table, we provide the m_tableColumns
variable (see Step 1) that was built for the table object to which this index
relates.

II. in_indexColumns (type vector<simba_unit16>): a vector of
columns index. This is the index of the column in the in_indexColumns
set. For example, if you have Table A with columns C1, C2, C3 and C4 and
the index is composed of columns C3 and C1 in this order, then in_
indexColumns should contain the (zero-based) index values: 2, 0.

C. These factories create a DSIExtIndexColumn object for each column included
in the index in the order they are referenced in the in_indexColumns vector
and push them into an IndexColumns object (an AutoVector of
DSIExtIndexColumn objects). The implementation provided creates another
mapping between the index columns and the table columns, but this may not be
needed for other data sources. Once these mappings are done, these objects
call the constructor of the DBIndexMetadata class.

D. The constructor stores the previously created IndexColumns vector and some
other fields into a member variable.

E. The other methods of the DBIndexMetadata class implement the pure virtual
methods of IUseableIndexMetadata. These methods should be
implemented in order to return values meaningful for the DSII, in particular,
GetIndexColumns() which returns the list of DSIExtIndexColumn objects
this index is based on.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
301

Simba SQLEngine

http://www.magnitude.com/

At this point, a DBIndexMetadata object has been created for each index of the
table. These objects derive from IUseableIndexMetadata and are to be placed in
the list returned by GetIndexes().

Step 3: Create the List That Needs to be Returned by GetIndexes()

Create the list that needs to be returned by GetIndexes():

A. If the DSII table object class derives from DSIExtSimpleResultSet, then the
m_indexMetaList protected member variable (type
DSIExtIndexMetadataList) is available for population. If not, then create
the member in the DSII table class.

B. In the constructor of the DSII table class, go through all the indexes for the
related table of your data store and create one DBIndexMetadata object per
index as follows:

I. Create the vector of column indexes as explained in Step 2.b.
II. Create the DBIndexMetadata object by calling the factory corresponding to

your index and adding this object to the m_indexMetaList member variable
using the AddIndexMetadata() method. The following is an example for a
non-primary key index:
AutoPtr<DBIndexMetadata> indexMeta(
DBIndexMetadata::CreateIndexInstance(
m_indexName, m_indexID, m_columns, m_indexColumns,
m_primaryKeyColumns, m_indexIsUnique));
m_indexes.AddIndexMetadata(AutoPtr<IIndexMetadata>(
indexMeta.Detach()));

When the DSII table object is created, it creates the list of objects needed for the
definition of the data store’s indexes. Since these objects are AutoVectors, they will
have the same lifespan as the table object.

Step 4: Implement the GetIndexes() method

Implement the GetIndexes()method and return a reference to the m_
indexMetaListmember variable. If the DSII table class derives from
DSIExtSimpleResultSet, then its implementation of GetIndexes() already
performs the correct logic and there is nothing more to do. If not, implement
GetIndexes() to return m_indexMetalist:
const IIndexMetadataList& DSIITable::GetIndexes() const
{

return m_indexMetaList;
}

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
302

Simba SQLEngine

http://www.magnitude.com/

Related Topics

Sample Index Implementation

Sample Index Implementation

This section provides an example of how you can implement your indexes.

//===
=========
/// @file DBIndexMetadata.h
///
/// Definition of the Class DBIndexMetadata
///
/// Copyright (C) 2013-2014 Simba Technologies Incorporated.
//===
=========
#ifndef _SIMBA_SQLENGINE_DBINDEXMETADATA_H_
#define _SIMBA_SQLENGINE_DBINDEXMETADATA_H_
#include "IUseableIndexMetadata.h"
#include "DB.h"
#include "AutoPtr.h"
#include <vector>
namespace Simba
{
namespace DBDSII
{
/// @brief Represents the metadata for a single index.
class DBIndexMetadata : public
Simba::SQLEngine::IUseableIndexMetadata
{
//Public===
====
public:
/// @brief Factory method.
///
/// @param in_name The name of the index.
/// @param in_indexID The ID of the index.
/// @param in_tableColumns The columns in the table this is
an index for.
/// @param in_indexColumns The columns this is an index on.
These indices index

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
303

Simba SQLEngine

http://www.magnitude.com/

/// in_tableColumns.
static AutoPtr<DBIndexMetadata> CreatePrimaryKeyInstance(
const simba_wstring& in_name,
db_id_t in_indexID,
Simba::DSI::IColumns& in_tableColumns,
const std::vector<simba_uint16>& in_indexColumns);
/// @brief Factory method.
///
/// @param in_name The name of the index.
/// @param in_indexID The ID of the index.
/// @param in_tableColumns The columns in the table this is
an index for.
/// @param in_indexColumns The columns this is an index on.
These indices index
/// in_tableColumns.
/// @param in_primaryKeyColumns The columns this primary key
is on. These indices index
/// in_tableColumns.
/// @param in_usUnique Whether this is a unique index.
static AutoPtr<DBIndexMetadata> CreateIndexInstance(
const simba_wstring& in_name,
db_id_t in_indexID,
Simba::DSI::IColumns& in_tableColumns,
const std::vector<simba_uint16>& in_indexColumns,
const std::vector<simba_uint16>& in_primaryKeyColumns,
bool in_isUnique);
/// @brief Return whether the associated index supports
indexing on IS NULL for
/// the given column.
///
/// @param in_column The column of interest.
///
/// @return True if the associated index supports indexing IS
NULL on the given column,
/// False otherwise.
virtual bool CanIndexOnNull(simba_uint16 in_column) const;
/// @brief Return whether the associated DSIExtIndex object
can produce table bookmarks.
///
/// Whether GetTableBookmark() can be called on the
associated DSIExtIndex to

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
304

Simba SQLEngine

http://www.magnitude.com/

/// produce a bookmark
/// for the row in the table referred to by the current row
in the DSIExtIndex.
///
/// If false, this index can only be used for 'index only
scans'.
///
/// @return Whether the associated DSIExtIndex object can
produce table bookmarks.
virtual bool CanProduceTableBookmarks() const;
/// @brief Get the name of the index.
///
/// @return The name of the index.
virtual const simba_wstring& GetName() const;
/// @brief Get the indexed columns.
///
/// @return The columns involved in the index.
virtual const Simba::SQLEngine::IndexColumns& GetIndexColumns
() const;
/// @brief Get the indices (into the parent table) of columns
/// whose data is retrievable via the associated index.
///
/// These are the columns whose data may be retrieved using
/// RetrieveData() on the associated DSIExtIndex object.
///
/// @return The indices of columns whose data is retrievable
via the associated index.
virtual const std::set<simba_uint16>& GetIncludedColumns()
const;
/// @brief Get a map from column indices in the parent
relation
/// to column indices in this index.
///
/// Specifically, this is a map from column indices from
columns retrievable
/// from the parent relation (for example, in the case of a
table, the
/// columns returned from DSIExtResultSet::GetSelectColumns()
) to
/// columns retrievable in the associated DSIExtIndex object
(in other words,

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
305

Simba SQLEngine

http://www.magnitude.com/

/// from this->GetIncludedColumns()).
///
/// @return A map from column indices in the parent relation
/// to column indices in this index.
virtual const Simba::SQLEngine::ColumnIndexMap&
GetTableColumnToIndexColumnMap() const;
/// @brief Get the type of the index.
///
/// @return The type of the index.
virtual Simba::SQLEngine::DSIExtIndexType GetType() const;
/// @brief Get if the indicated condition type is supported
/// for the given column of the index.
///
/// @param in_type The condition type of interest.
/// @param in_column The column of interest.
///
/// @return True if the condition type is supported for the
given column;
/// false otherwise.
virtual bool IsConditionTypeSupported(
Simba::SQLEngine::DSIExtColumnConditionType in_type,
simba_uint16 in_column) const;
/// @brief Get if the index is the primary key.
///
/// Note that only one index should be the primary key for
any table.
///
/// @return True if the index is the primary key; false
otherwise.
virtual bool IsPrimaryKey() const;
/// @brief Get if the index traverses its rows in the order
defined by the bookmark
/// comparator.
///
/// For example, this will be true if the bookmark comparator
for the parent table is
/// based on the row's location on disk, and this index is
clustered.
///
/// If this returns true, the SQLEngine will not attempt to
sort the stream of

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
306

Simba SQLEngine

http://www.magnitude.com/

/// bookmarks produced by this index with the table's
bookmark comparator. This
/// will cause incorrect results if the index does not
actually follow that order.
///
/// @return True the index traverses its rows in the order
defined by the bookmark
/// comparator, False otherwise.
virtual bool IsInBookmarkComparatorOrder() const;
/// @brief Get if the index is a sorted index.
///
/// @return True if the index is a sorted index; false
otherwise.
virtual bool IsSorted() const;
/// @brief Get if the index is a unique index.
///
/// @return True if the index is a unique index; false
otherwise.
virtual bool IsUnique() const;
/// @brief Get the ID for this index.
///
/// @return The ID for this index.
db_id_t GetIndexID() const;

// Private
===
=====================
private:
/// @brief Private constructor so that consumers must use
factory method.
///
/// @param in_name The name of the index.
/// @param in_columns The columns involved in the index, in
the order
/// they appear
/// in the index. Takes ownership of the objects held.
/// (in_columns will be empty after the constructor returns)
/// @param in_includedColumns Metadata for all columns
included in this index,
/// including ones which cannot be SEEKed on.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
307

Simba SQLEngine

http://www.magnitude.com/

/// @param in_columnIndexMap A map from table column indices
to column indices
/// in this index.
/// @param in_isInBookmarkComparatorOrder Indicate if the
index order respect the one
/// of the bokmark comparator.
/// @param in_isUnique Indicate if the index is unique.
/// @param in_indexID The DB internal index identifier.
DBIndexMetadata(
const simba_wstring& in_name,
Simba::SQLEngine::IndexColumns& in_columns,
const std::set<simba_uint16>& in_includedColumns,
const Simba::SQLEngine::ColumnIndexMap& in_columnIndexMap,
bool in_isInBookmarkComparatorOrder,
bool in_isUnique,
db_id_t in_indexID);
simba_wstring m_name;
Simba::SQLEngine::IndexColumns m_indexColumns;
std::set<simba_uint16> m_includedColumns;
Simba::SQLEngine::ColumnIndexMap m_columnIndexMap;
bool m_isUnique;
bool m_isInBookmarkComparatorOrder;
// The ID for this index.
db_id_t m_indexID;
};
}
}
#endif

//
===
====================================
/// @file DBIndexMetadata.cpp
///
/// Implementation of the Class DBIndexMetadata
///
/// Copyright (C) 2013 Simba Technologies Incorporated.
//
===
====================================
#include "DBIndexMetadata.h"

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
308

Simba SQLEngine

http://www.magnitude.com/

#include "DSIColumnMetadata.h"
#include "DSIExtIndexColumn.h"
#include "DSIResultSetColumn.h"
#include "DSIResultSetColumns.h"
#include "SqlTypeMetadata.h"
#include <algorithm>
using namespace Simba::DBDBDSII;
using namespace Simba::DSI;
using namespace Simba::SQLEngine;
using namespace std;
//
Public===
================================
AutoPtr<DBIndexMetadata>
DBIndexMetadata::CreatePrimaryKeyInstance(
const simba_wstring& in_name,
db_id_t in_indexID,
Simba::DSI::IColumns& in_tableColumns,
const std::vector<simba_uint16>& in_indexColumns)
{
IndexColumns indexColumns;
indexColumns.reserve(in_indexColumns.size());
// Create the list of the columns that are part of the
primary index.
vector<simba_uint16>::const_iterator it = in_
indexColumns.begin();
const vector<simba_uint16>::const_iterator end = in_
indexColumns.end();
for (; it != end; ++it)
{
indexColumns.push_back(
new DSIExtIndexColumn(in_tableColumns.GetColumn(*it), DSIEXT_
SORT_ASCENDING));
}
// Create a map between the columns of the table and the
corresponding
// column in the index. We do this for all columns in the
index (key of
// the map=column index in table, value=column index in
tuple).
ColumnIndexMap columnIndexMap;

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
309

Simba SQLEngine

http://www.magnitude.com/

set<simba_uint16> includedColumns;
for (simba_uint16 i = 0; i < in_indexColumns.size(); ++i)
{
columnIndexMap[in_indexColumns[i]] = i;
includedColumns.insert(in_indexColumns[i]);
}
// A primary index is clustered and unique.
AutoPtr<DBIndexMetadata> result(new DBIndexMetadata(
in_name,
indexColumns,
includedColumns,
columnIndexMap,
true,
true,
in_indexID));
return result;
}
///
////////////////////////////////////
AutoPtr<DBIndexMetadata> DBIndexMetadata::CreateIndexInstance
(
const simba_wstring& in_name,
db_id_t in_indexID,
IColumns& in_tableColumns,
const vector<simba_uint16>& in_indexColumns,
const std::vector<simba_uint16>& in_primaryKeyColumns,
bool in_isUnique)
{
IndexColumns indexColumns;
indexColumns.reserve(in_indexColumns.size());
// Create the list of the columns that are directly part of
the index.
// NOTE: A DBDB tuple on a secondary index includes the
columns of the
// primary index, but these columns are not included here
except for
// the ones that are in both indexes.
vector<simba_uint16>::const_iterator it = in_
indexColumns.begin();
const vector<simba_uint16>::const_iterator end = in_
indexColumns.end();

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
310

Simba SQLEngine

http://www.magnitude.com/

for (; it != end; ++it)
{
indexColumns.push_back(
new DSIExtIndexColumn(in_tableColumns.GetColumn(*it), DSIEXT_
SORT_ASCENDING));
}
// Create a map between the columns of the table and the
corresponding
// column in the index. We do this for all columns in the
index (key of
// the map=column index in table, value=column index in
tuple).
ColumnIndexMap columnIndexMap;
set<simba_uint16> includedColumns;
for (simba_uint16 i = 0; i < in_indexColumns.size(); ++i)
{
columnIndexMap[in_indexColumns[i]] = i;
includedColumns.insert(in_indexColumns[i]);
}
// As an DBDB tuple on a secondary index contains also the
columns of the
// primary index, we add the mapping between the column of
the table and the
// corresponding column in the primary index. In case the
primary and secondary
// index have one or more columns in common, the DBDB tuple
won't duplicate
// them.
// The tuple columns are then built as follows: put the
columns of the
// secondary index in the order they were created in the
secondary index
// followed by the columns of the primary index that have not
yet been included
// in the order they were created in the primary index.
simba_uint16 numberPKIncluded = 0;
for (simba_uint16 i = 0; i < in_primaryKeyColumns.size();
++i)
{
if (columnIndexMap.end() == columnIndexMap.find(in_
primaryKeyColumns[i]))

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
311

Simba SQLEngine

http://www.magnitude.com/

{
columnIndexMap[in_primaryKeyColumns[i]] = in_
indexColumns.size() +
(numberPKIncluded++);
includedColumns.insert(in_primaryKeyColumns[i]);
}
}
// A secondary index is not clustered.
AutoPtr<DBIndexMetadata> result(new DBIndexMetadata(
in_name,
indexColumns,
includedColumns,
columnIndexMap,
false,
in_isUnique,
in_indexID));
return result;
}
///
///////////////////////////////////////
bool DBIndexMetadata::CanIndexOnNull(simba_uint16 in_column)
const
{
UNUSED(in_column);
return false;
}
///
///////////////////////////////////////
bool DBIndexMetadata::CanProduceTableBookmarks() const
{
return true;
}
///
///////////////////////////////////////
const simba_wstring& DBIndexMetadata::GetName() const
{
return m_name;
}
///
///////////////////////////////////////
const IndexColumns& DBIndexMetadata::GetIndexColumns() const

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
312

Simba SQLEngine

http://www.magnitude.com/

{
return m_indexColumns;
}
///
///////////////////////////////////////
const std::set<simba_uint16>&
DBIndexMetadata::GetIncludedColumns() const
{
return m_includedColumns;
}
///
///////////////////////////////////////
const ColumnIndexMap&
DBIndexMetadata::GetTableColumnToIndexColumnMap() const
{
return m_columnIndexMap;
}
///
///////////////////////////////////////
DSIExtIndexType DBIndexMetadata::GetType() const
{
return m_isInBookmarkComparatorOrder ? INDEX_CLUSTERED :
INDEX_BTREE;
}
///
///////////////////////////////////////
bool DBIndexMetadata::IsConditionTypeSupported(
DSIExtColumnConditionType in_type,
simba_uint16 in_column) const
{
UNUSED(in_column);
return (COLUMN_CONDITION_IS_NOT_NULL == in_type) || (COLUMN_
CONDITION_IS_IN_RANGE == in_type);
}
///
///////////////////////////////////////
bool DBIndexMetadata::IsPrimaryKey() const
{
return m_isInBookmarkComparatorOrder;
}

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
313

Simba SQLEngine

http://www.magnitude.com/

///
///////////////////////////////////////
bool DBIndexMetadata::IsInBookmarkComparatorOrder() const
{
return m_isInBookmarkComparatorOrder;
}
///
///////////////////////////////////////
bool DBIndexMetadata::IsSorted() const
{
return true;
}
///
///////////////////////////////////////
bool DBIndexMetadata::IsUnique() const
{
return m_isUnique;
}
///
///////////////////////////////////////
ib_id_t DBIndexMetadata::GetIndexID() const
{
return m_indexID;
}
// Private
===
============================
///
///////////////////////////////////////
DBIndexMetadata::DBIndexMetadata(
const simba_wstring& in_name,
Simba::SQLEngine::IndexColumns& in_columns,
const std::set<simba_uint16>& in_includedColumns,
const Simba::SQLEngine::ColumnIndexMap& in_columnIndexMap,
bool in_isInBookmarkComparatorOrder,
bool in_isUnique,
ib_id_t in_indexID) :
m_name(in_name),
m_includedColumns(in_includedColumns),
m_columnIndexMap(in_columnIndexMap),

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
314

Simba SQLEngine

http://www.magnitude.com/

m_isInBookmarkComparatorOrder(in_
isInBookmarkComparatorOrder),
m_isUnique(in_isUnique),
m_indexID(in_indexID)
{
m_indexColumns.swap(in_columns);
}

Related Topics

Support for Indexes

Custom Scalar and Aggregate Functions

Simba SDK version 9.3 introduced support for the creation of custom scalar and
aggregate functions. To enable this functionality, the following changes were made to
the SDK:

l In the PSDataType enum, PS_DT_SCALARFN has been renamed to PS_DT_
SCALARORAGGRFN.

l In the PSNonTerminalType enum, PS_NT_SCALAR_FN has been renamed to
PS_NT_SCALAR_OR_AGGR_FN, and PS_NT_CUSTOM_AGGR has been added.
PS_NT_CUSTOM_AGGR is used when the parser knows unambiguously that a
function is an aggregate function (i.e. a set quantifier ALL or DISTINCT has been
specified).

l Custom scalar functions are represented in the AETree as AECustomScalarFn
nodes.

l Custom aggregate functions are represented in the AETree with
AECustomAggregateFn nodes.

Note:

Custom aggregate functions are not supported in Java.

To implement a custom scalar function in the C++ or Java SDK:

1. In the C++ SDK, create a CustomerDSIExtScalarFunction class which
subclasses DSIExtScalarFunction and represents your custom scalar
function.

Or, for the Java SDK, subclass CustomScalarFunction.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
315

Simba SQLEngine

http://www.magnitude.com/

2. Implement the methods defined by DSIExtScalarFunction or
CustomScalarFunction, in particular the following:

l Execute()

Takes in a collection of input values and performs the execution of the
scalar function.

l RetrieveData()

Used to retrieve the output from Execute().

Note:

If you use Simba’s execution engine, Execute() will be called with
the input arguments, and then RetrieveData()will be called to
get the result. This happens at least once per row. If you do not plan
to use Simba’s execution engine, then the implementation of both
methods should throw an exception to avoid the cases where
Function is never passed down and the engine tries to call the
unimplemented ScalarFunctionmethods.

l UpdateMetadata()

Called once during prepare and should compute preliminary metadata for
the input arguments and return value of the scalar function. Note that this
metadata could be inaccurate (e.g. due to parameters in the query), so the
method should not throw any exceptions related to invalid argument types.
The method will be called again at execution time, so you can update the
metadata to the final input and output metadata, and throw an exception if
the given input metadata is not valid for your scalar function.

Note:

The SQLEngine will attempt to convert any inputs into the specified
argument types, so an exact match of types is not required.

3. Override OpenScalarFunction() in your DSIExtSqlDataEngine derived
class for C++, or SqlDataEnginederived class for Java. This method takes in
the name of the scalar function to execute along with the arguments, and returns
your CustomerDSIExtScalarFunction class. An exception can be thrown if
the number of parameters doesn’t match that required by the scalar function.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
316

Simba SQLEngine

http://www.magnitude.com/

To implement a custom aggregate function:

1. Create a CustomerDSIExtAggregateFunction class which subclasses
DSIExtAggregateFunction and represents your custom aggregate function.

There are no Execute()/RetrieveData() functions since we currently do
not support using custom aggregate functions in our execution engine. This
means that if you use our execution engine, your DSII MUST handle the custom
aggregate function during CQE. This limitation may be lifted in a future version of
the SDK.

2. Override OpenScalarFunction() in your DSIExtSqlDataEngine class
(e.g. CustomerDSIIDataEngine) to return an instance of
CustomerDSIExtAggregateFunction when provided with the aggregate
function's name and correct number of arguments (currently only one parameter
is supported).

Note:

Custom aggregate functions currently only support one parameter and
are also not supported in the execution engine; they must be handled via
CQE.

The SQLite sample connector contains examples of custom scalar and
aggregate functions. See SLDataEngine, SLAggrFnName, SLAggrFnum,
SLScalarFnAdd, and SLScalarFnConcat. Note that the custom aggregate
functions in this connector are only for illustration and cannot be executed as
CQE handling has not been implemented for aggregate functions.

Related Topics

How to Implement Custom SQL Scalar Functions in an ODBC Connector

Stored Procedures

This feature is available in the C++ and the Java SDK. Instead of calling a SQL
statement on the data store, an application can call a stored procedure. A stored
procedure is an operation that allows the DSI to take advantage of internal functions or
extended non-SQL functionality that the data store may support. Custom functions that
can be implemented inside these stored procedures may allow access to data that is
not stored in standard relational tables.

Stored Procedures in the C++ Simba SDK

The C++ Simba SDK provides the following DSI API classes to support stored
procedures:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
317

Simba SQLEngine

http://www.simba.com/blog/custom-sql-scalar-functions-in-odbc-driver
http://www.magnitude.com/

l DSIExtProcedure

The base class for DSII stored procedures. Implement the pure virtual functions
to provide functionality. This class provides the framework for custom stored
procedures, which are returned to SQLEngine via
DSIExtSqlDataEngine::OpenProcedure().

l DSIExtMetadataHelper

We recommend that you implement the virtual function GetNextProcedure()
to allow the SDK to get a list of defined procedures. Although this is optional, it is
recommended.

l DSIExtSqlDataEngine

Use this to implement OpenProcedure(), same as OpenTable().

Note:

The SQLite sample shows many examples of the different ways that stored
procedures can be used, and is an excellent reference.

Stored Procedures in the Java Simba SDK

The Java Simba SQLEngine provides the following DSI API classes to support stored
procedures:

• StoredProcedure
The base class for DSII stored procedures. Implement the pure virtual functions to
provide functionality. This class provides the framework for custom stored procedures,
which are returned to SQLEngine via DSIExtSqlDataEngine::OpenProcedure
().

• IMetadataHelper
Use this to support GetNextProcedure() to allow the SDK to get a list of defined
procedures.

• SqlDataEngine
Use this to implement OpenProcedure(), same as OpenTable().

Create Table As Select (CTAS)

In SQL, you can use the CREATE TABLE AS SELECT statement to copy the contents
of an existing table or tables into a new table. The CTAS statement creates a new
table based on the output of a SELECT statement. The Simba SQLEngine allows you
to support CTAS commands in your custom ODBC connector.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
318

Simba SQLEngine

http://www.magnitude.com/

Example CTAS statement:

The following statement copies the table Employee to the table NewTable:
CREATE TABLE NewTable AS SELECT * FROM Employee

Note:

The command CREATE TABLE AS SELECT is also called CREATE TABLE
AS.

Level of support for CTAS

The Simba SDK supports the SQL 2003 specification for CREATE TABLE AS, with the
following exceptions:

l table distribution options are not supported
l union, except and intersect select options are not supported

Implementing CTAS in your custom ODBC Connector

To implement CTAS in your connector, your connector must have read-write
capability. As well, your connector must implement the
MyDataEngine::CreateTable()method, where MyDataEngine is your
DSIExtSqlDataEngine-derived class.

When a CTAS SQL command is received, the Simba SDK calls your connector's
MyDataEngine::BeginCreateTable(). Then, the Simba SDK passes in a table
specification. The BeginCreateTable()method must return an object of a class
that implements ITableTemplate. The Simba SDK fills in the table template, then
calls Instantiate() on the template. Your connector must provide the
implementation of Instantiate().

Example - Implementing CTAS in Your Connector

1. Change your MyTable class to extend ITableTemplate in addition to any
other classes that it extends.

2. Implement the MyTable::Instantiate()method. This method should
ensure that the table is ready to be used.

3. Update the MyDataEngine class to implement the BeginCreateTable()
method.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
319

Simba SQLEngine

http://www.magnitude.com/

Specifications

This section lists the platform and compiler requirements for the Simba SDK. It also
lists the level of SQL conformance that is supported.

Supported Platforms

This section lists the platforms and compilers that are supported by the Simba SDK
version 10.3.0.

Hardware Requirements

On all supported platforms, the minimum hardware requirements are as follows:

l 8 GB of free disk space
l 1 GB RAM

Software Requirements

The following table lists the supported platforms and compilers:

Platform Versions Compilers Bits

Windows

10 & 11

Server 2016, 2019
& 2022

Visual Studio 2019 &
2022

.NET Standard 2.0

.NET Core

.NET Framework 3.5 &
4.6.2

32, 64

Linux

CentOS/Oracle
Linux/RHEL 7 & 8

Debian 10

SLES 12 & 15

Ubuntu 18.04 LTS, &
20.04 LTS

GNU GCC 4.8.5 & 5.5 32, 64

Linux ARM Debian 10 GNU GCC 8.3 32, 64

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
320

Specifications

http://www.magnitude.com/

Platform Versions Compilers Bits

macOS 11 (Apple M1) Xcode 12.4

64

64

64

Solaris
SPARC 10, 11 Oracle Solaris Studio

12.6 (Solaris 11) 32, 64

Solaris x86 11 Oracle Solaris Studio
12.6 (Solaris 11) 32, 64

7.2 XLClang C/C++ V16.1 32, 64

JDBC and JDK Support

The following list shows the JDK requirements for each version of JDBC:

l JDBC 4.2 used with JDK 1.8

Supported ODBC/SQL Functions

This section lists the ODBC-defined scalar functions that are supported by the SQL
Engine.

Explicit Covert functions

l CONVERT
l CAST

String Functions

l ASCII
l CHAR
l CONCAT
l INSERT
l LCASE
l LEFT
l LENGTH
l LOCATE
l LTRIM

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
321

Specifications

http://www.magnitude.com/

l REPEAT
l REPLACE
l RIGHT
l RTRIM
l SOUNDEX
l SPACE
l SUBSTRING
l UCASE

System Functions

l DATABASE
l IFNULL
l USER

Numeric Functions

l ABS
l ACOS
l ASIN
l ATAN
l ATAN2
l CEILING
l COS
l COT
l DEGREES
l EXP
l FLOOR
l LOG
l LOG10
l MOD
l PI
l POWER
l RADIANS
l RAND
l ROUND
l SIGN

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
322

Specifications

http://www.magnitude.com/

l SIN
l SQRT
l TAN
l TRUNCATE

Aggregate Functions

l AVG
l COUNT
l MAX
l MIN
l STDDEV
l STDDEV_POP
l SUM
l VAR
l VAR_POP

Time, Date, and Interval Functions

l CURDATE
l CURTIME
l CURRENT_DATE
l CURRENT_TIME
l CURRENT_TIME (time precision)
l CURRENT_TIMESTAMP
l CURRENT_TIMESTAMP (time precision)
l DAYNAME
l DAYOFMONTH
l DAYOFWEEK
l DAYOFYEAR
l HOUR
l MINUTE
l MONTH
l MONTHNAME
l NOW
l QUARTER
l SECOND

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
323

Specifications

http://www.magnitude.com/

l TIMESTAMPADD
l TIMESTAMPDIFF
l WEEK
l YEAR

Supported SQL Conformance Level

The Simba SDK supports the full core-level ODBC 3.80. It supports most of the Level 1
and Level 2 API.

The ODBC specification provides three levels of SQL grammar conformance:
Minimum, Core and Extended. Each higher level provides more fully implemented
data definition and data manipulation language support. The level of supported SQL
grammar is dependent on your SQL-enabled data source. At the very least, your SQL-
enabled data source must conform to the minimum SQL grammar defined by the
ODBC version 3.52 specification.

Conformance
Level Interfaces Conformance

Level Interfaces

Core SQLAllocHandle Core SQLGetInfo

Core SQLBindCol Core SQLGetStmtAttr

Core SQLBindParameter Core SQLGetTypeInfo

Core SQLCancel Core SQLNativeSql

Core SQLCloseCursor Core SQLNumParams

Core SQLColAttribute Core SQLNumResultCols

Core SQLColumns Core SQLParamData

Core SQLConnect Core SQLPrepare

Core SQLCopyDesc Core SQLPutData

Core SQLDescribeCol Core SQLRowCount

Core SQLDisconnect Core SQLSetConnectAttr

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
324

Specifications

http://www.magnitude.com/

Conformance
Level Interfaces Conformance

Level Interfaces

Core SQLDriverconnect Core SQLSetCursorName

Core SQLEndTran Core SQLSetDescField

Core SQLExecDirect Core SQLSetDescRec

Core SQLExecute Core SQLSetEnvAttr

Core SQLFetch Core SQLSetStmtAttr

Core SQLFetchScroll Core SQLSpecialColumns

Core SQLFreeHandle Core SQLStatistics

Core SQLFreeStmt Core SQLTables

Core SQLGetConnectAttr Level 1 SQLBrowseConnect

Core SQLGetCursorName Level 1 SQLMoreResults

Core SQLGetData Level 1 SQLPrimaryKeys

Core SQLGetDescField Level 1 SQLProcedureColumn
s

Core SQLGetDescRec Level 1 SQLProcedures

Core SQLGetDiagField Level 2 SQLColumnPrivileges

Core SQLGetDiagRec Level 2 SQLDescribeParam

Core SQLGetEnvAttr Level 2 SQLForeignKeys

Core SQLGetFunctions Level 2 SQLTablePrivileges

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
325

Specifications

http://www.magnitude.com/

Methods

The following section contains guidelines and considerations for implementing specific
methods in your connectors.

IStatement::ExecuteBatch()

This method is used to execute a set of statements in a batch.

Note:

This method can only be used to execute a statement batch coming from a
JDBC client. See the documentation for Java's
java.sql.Statement#executeBatch() for more information.

The statements in in_statements are not already converted to the underlying datas
source's native syntax. If the IDriver property DSI_DRIVER_NATIVE_SQL_BEFORE_
PREPARE is set to DSI_PROP_TRUE, the default implementation of this method
transforms the statements with IConnection::ToNativeSql().

All statements in in_statements should return a single rowcount result (no result sets).

The DSI_CONN_STOP_ON_ERROR connection property should be respected.

By default, the implementation runs according to the following logic:

Note:

This is not functioning code.

BatchResult res = new BatchResult();
for (stmt : in_statement)

{
try
{

res.AddRowCount(Execute(stmt));

}
catch (...)
{

res.AddError(GetCurrentException());

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
326

Methods

http://www.magnitude.com/

if (StopOnError)
break;

}

}
return res;

Where Execute(stmt) calls IStatement::CreateDataEngine(), uses it to
execute the statement via the query executor returned by IDataEngine::Prepare
(), and then destroys the query executor and data engine. If the executed statement
returns multiple results, or a resultset, this is represented as an error in the returned
IBatchResult object.

Statements
@param in_statements

The list of SQL statements to execute as part of the batch.
@return

An IBatchResult object describing the results of the execution (OWN)
virtual Simba::DSI::IBatchResult* ExecuteBatch(const
std::vector<simba_wstring>& in_statements);

Exposes an iterator to the results of IStatement::ExecuteBatch().

Initially, this object is positioned before the first result, and may only be iterated over
once.

This object's results are sequential. The first result is for the first statement in the
batch, the next result is for the second statement, and so forth. There is at most 1
result per statement.

The function produces results for a contiguous prefix of the statements, and those
results are either a single rowcount or a set of errors. Depending on the structure of the
statements, this prefix may be the entirety of the set. No gaps occur in the results and,
if there are no errors, there are as many results in the object as there were statements
in the batch. If the DSII stops on errors within a batch (DSI_CONN_STOP_ON_ERROR is
set), then fewer objects than statements can occur. The JDBC specification states a
given data source must be consistent in this behavior, either always stopping on error
or never stopping. The SDK does not enforce this.

Result

Returns IBatchResult object. This object includes the following interface.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
327

Methods

http://www.magnitude.com/

IBatchResult() {}

Constructor
virtual ~IBatchResult() {}

Destructor
enum ResultType

Describes the state of this object.
ROWCOUNT_RESULT

Indicates this object is currently positioned on a rowcount result.
ERROR_RESULT

Indicates this object is currently positioned on an error result.
NO_MORE_RESULTS

Indicates this object has no more results.
virtual ResultType MoveNext() = 0;

Moves to the next result exposed by this object (if there are any). Returns NO_MORE_
RESULTS if there are no more results, otherwise returns ROWCOUNT_RESULT or
ERROR_RESULT to indicate the type of the current result.
virtual bool GetCurrentRowCount(simba_uint64& out_rowCount)
const = 0;

Gets the current rowcount result. If the rowcount was known, it is returned via the out
parameter out_rowCount.

Note:

This may only be called if the last call to MoveNext() returned
ROWCOUNT_RESULT.

virtual const std::vector<ErrorException>& GetCurrentErrors()
const = 0;

Gets any errors that occurred for the current result.

Note:

Will return an empty vector unless MoveNext() returned ERROR_
RESULT.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
328

Methods

http://www.magnitude.com/

Compiling Your Connector

The 5 Day Guides at http://www.simba.com/resources/sdk/documentation/ provide
step-by-step instructions on how to compile and build the debug version of each
sample connector. This section provides more details on the compile and build
process, and explains the available options.

For information on packaging your connector as a product for end customers, see
Packaging Your Connector.

Upgrading Your Makefile to 10.1

In the 10.1 release, the Simba SDK introduces a new, simplified makefile system
which is very different from the ones used in previous versions. This section explains
how to customize and upgrade the sample makefiles in SDK 10.1 for your own custom
ODBC connectors.

Updated Name and Location of Makefiles

This section explains the name and location of the new makefiles, including how to
invoke them when building your custom ODBC connector.

How to invoke the makefile

We recommend that you invoke the makefile using
[DriverFolder]/Source/mk.sh. This script invokes and passes along all the
arguments to the makefile, [DriverFolder]/Source/GNUmakefile.

Note:

We do not recommend using [DriverFolder]/Source/GNUmakefile
directly, because all object files will be generated directly under the source
directory.

The following table summarizes the differences in the makefiles between the 10.1 and
10.0 release.

10.1 10.0

How to invoke the makefile

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
329

Compiling Your Connector

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

10.1 10.0

From the [DriverFolder]/Source
folder, type:

./mk.sh

From the
[DriverFolder]/Makefile folder,
type:

make -f [DriverName].mak

Main entry makefile

[DriverFolder]/Source/GNUmakef
ile [DriverFolder]/Makefile/

[DriverName].mak

Supporting makefiles for each connector

The content of the supporting makefiles
for each connector is merged into the
entry makefile.

These makefiles are invoked by the
entry makefile:
[DriverFolder]/Source/Makefi
le

[DriverFolder]/Source/Makefi
le_FLAGS.mak

[DriverFolder]/Source/Makefi
le_SRCS.mak

Common makefiles shared by all connectors

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
330

Compiling Your Connector

http://www.magnitude.com/

10.1 10.0

These makefiles are invoked by the entry
makefile:
[SIMBAENGINE_
DIR]/Makefiles/kit.mk
[SIMBAENGINE_
DIR]/Makefiles/kit.sh

l Platform.mak, which was used
to obtain platform-dependent
information, has been replaced by
the new kit.sh script file.

l Settings_XXX.mak, Rule_
XXX.mak and Master_
Targets.mak have been merged
into the new kit.mk file.

These makefiles are invoked by the
entry makefile:
[SIMBAENGINE_
DIR]/Makefiles/Platform.mak
[SIMBAENGINE_
DIR]/Makefiles/Settings_
[PlatformName].mak
[SIMBAENGINE_
DIR]/Makefiles/Master_
Targets.mak
[SIMBAENGINE_
DIR]/Makefiles/Rules_
[PlatformOrCompilerName].mak

Customizing the Sample Makefiles

The main entry makefile is [DriverFolder]/Source/GNUmakefile. In most
cases, this is the only file that you need to modify for your custom ODBC connector.
This section includes the following steps:

Step 1: Modify the name and location of the generated binary files

Step 2: Add source files and specify where to find them

Step 3: Add Search Paths for .h files and other compiler/linker flags

Step 1: Modify the name and location of the generated binary files

1. Modify target.driver = libQuickstart${BITS}.${SO} and
target.server = QuickstartServer${BITS} to change the default file
name for the connector and server. Note the following:

l ${BITS} represents the bitness of the current product, typically 32 or 64
(for OSX, it could also be 3264).

l ${SO} is the default platform-dependendent extension name for shared
library. Typically this is dylib for OSX and so for other UNIX systems.

2. Optionally, update the location. By default, the final product is built under
[DriverFolder]/Bin/[PlatformName]/[ConfigurationMode]
[BitNess], for example [DriverFolder]/Bin/Linux_x86_
gcc/debug64. If this location needs to be changed, modify the DESTDIR.bin
variable.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
331

Compiling Your Connector

http://www.magnitude.com/

Example:

SDK 10.1 [DriverFolder]/Source/GNUmakefile
Define the product names
target.driver = libMyCustomDSII${BITS}.${SO}
target.server = MyCustomDSII${BITS}
#...
Change default install location
DESTDIR.bin = $./../MyDirectory/${PLATFORM}/${MODE}${BITS}

Comparing 10.0 and 10.1 variables for this step:

This table shows how the 10.1 variables in this step map to the 10.0 variables. In 10.0,
the variables are in [DriverFolder]/Source/Makefile.

Description Name in 10.1 Name in 10.0

name of connector target.driver TARGET_SO

name of server target.server TARGET_BIN

location of generated binary DESTDIR.bin TARGET_BIN(SO)_PATH

config mode (release/debug) MODE No equivalence

bitness (32/64/3264) BITS BITNESS

suffix of shared libs (so / dylib) SO SO_SUFFIX

In 10.0, [DriverFolder]/Source/Makefile uses TARGET_BIN and TARGET_SO
to define binary file names. As well, destination directories are specified by TARGET_
BIN_PATH and TARGET_SO_PATH, as shown in the following example:

Example:

SDK 10.0 [DriverFolder]/Source/Makefile
PROJECT = MyCustomDSII
MAKEFILE_PATH = ../Makefiles
ifeq ($(BUILDSERVER),exe)
TARGET_BIN_PATH = ../Bin/$(PLATFORM)
TARGET_BIN = $(TARGET_BIN_PATH)/$(PROJECT)_server_<TARGET>
else

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
332

Compiling Your Connector

http://www.magnitude.com/

TARGET_SO_PATH = ../Bin/$(PLATFORM)
TARGET_SO = $(TARGET_SO_PATH)/lib$(PROJECT)_<TARGET>.$(SO_
SUFFIX)
endif
#...

Note:

In 10.0, the _<TARGET> suffix in TARGET_BIN(SO) is not a variable. Instead,
this is a special string that was replaced by either a _Debug suffix or an empty
string (depending on the config mode) in the master makefiles provided under
SIMBAENGINE_DIR. By default, both debug and release connectors were
generated into the same folder, and relied on suffixes in filenames to
differentiate release and debug builds.

In 10.1, binary files do not have a release or debug suffix in their name.
Instead, release and debug builds are put under different folders.

Step 2: Add source files and specify where to find them

1. Modify the file names. To do this, modify the following line to list your own source
files:
${target}: Main_Unix.o QSConnection.o QSDataEngine.o...

Note:

This list actually contains object files, so they should all have .o
extension, rather than their original .cpp extension names. As well, you
do not need to include the paths to the source files.

2. Modify the target-specific files. If some source files should only be included when
the DSII is built as a server, then you must add these files to a
${target.server}: ... dependency list, instead of the common object file
list ${target}: ...; As well, when the DSII is build as a connector (a shared
library), these files should be added to ${target.driver}: ...

3. Modify the file paths. To do this modify the following line to include all directories
that contain source files for the connector:

drvsrcdirs = $./Common $./Core $./DataEngine
$./DataEngine/Metadata

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
333

Compiling Your Connector

http://www.magnitude.com/

Note:

The symbol $. is a variable defined in kit.mk that represents the full
path of the directory where GNUmakefile is located, for example
[DriverFolder]/Source/. We recommend using this variable
instead of using [DriverFolder]/Source/.

Example:

Suppose the source files of the MyCustomDSII connector are laid out in the
following folder hierarchy:
Source
--/MySourceDir1
----MyCommonSource1.cpp # Common source files for both
connector and server
----MyCommonSource2.cpp
----MyDriverSpecificSource1.cpp # Connector specific
source file.
----MyCommonSource1.h # Common header files
----MyCommonSource2.h
----MyDriverSpecificSource1.h # Connector specific header
file.
--/MyFolder2
----MyCommonSource3.cpp
----MyServerSpecificSource1.cpp # Server specific source
file
----MyCommonSource3.h
----MyServerSpecificSource1.h # Server specific header
file
--/MyIncludeDir1
----MyOtherInclude1.h
--/MyIncludeDir2
----MyOtherInclude2.h

In this case, the filename and path lists should be configured as follows:

makefile # SDK 10.1 [DriverFolder]/Source/GNUmakefile
#... ### Specify directories to all folders that contain
source files for this connector drvsrcdirs =
$./MySourceDir1 $./MySourceDir2

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
334

Compiling Your Connector

http://www.magnitude.com/

4. Add the source file specific to "connector". For example:
${target.driver} : MyDriverSpecificSource1.o
${target.driver} : LDLIBS += $(call Mutual, ${CORESDK.a}
${SQLENGINE.a} ${ODBCSDK.a}) #...

5. Add source file specific to "server". For example:
${target.server} : MyServerSpecificSource1.o
${target.server} : CPPFLAGS += ${SERVERSDK_CPPFLAGS} #...

6. Modify source file list shared by both "connector" and "server". For example:
${target} : MyCommonSource1.o MyCommonSource2.o
MyCommonSource3.o #...

Comparing 10.0 and 10.1 variables:

The 10.1 variables involved in this step corresponds to variables in
[DriverFolder]/Source/Makefile_SRCS.mak in 10.0:

Description Name in 10.1 Name in 10.0

list of files listed directly in target rules as .o COMMON_SRCS

list of directories drvsrcdirs COMMON_SRCS

In 10.0, the list of source files, along with their paths, are specified by the COMMON_
SRCS variable in [DriverFolder]/Source/Makefile_SRCS.mak.

Example:

SDK 10.0 [DriverFolder]/Source/Makefile_FLAGS.mak
Common Sources used to build this project.
COMMON_SRCS = \
Common/QSTableMetadataFile.cpp \
Common/TabbedUnicodeFileReader.cpp \
Core/QSConnection.cpp \
Core/QSDriver.cpp \
Core/QSEnvironment.cpp \
Core/QSStatement.cpp \
DataEngine/QSDataEngine.cpp \
DataEngine/QSMetadataHelper.cpp \
DataEngine/QSTable.cpp \
DataEngine/QSTypeInfoMetadataSource.cpp

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
335

Compiling Your Connector

http://www.magnitude.com/

Step 3: Add Search Paths for .h files and other compiler/linker flags

1. Add search paths for headers. To do this, modify the following line to include
your own search directories for header files:
${target} : CPPFLAGS += $(addprefix -I, $. ${drvsrcdirs}
$(patsubst %,%/Include, ${drvsrcdirs}) $./Setup)

In this sample makefile, all directories listed in drvsrcdirs, and an Include
directory under each of those directories are automatically added as search
directories. You may append additional directories if they are not already in this
default list.

2. Add or modify other compiler and preprocessor flags other than the header file
search paths. To do this, add or modify existing target dependency lists that
contains ${target}: CXXFLAGS+= and ${target}: CPPFLAGS+=...
respectively.

3. Modify the linker flags. To add or modify linker flags and thirdparty libraries to be
linked, add or modify existing target dependency lists that contains ${target}:
LDFLAGS+= and ${target}: LDLIBS+=..., respectively.

4. Modify the target specific flags. If a flag should be added when building
connector but not server (or the other way around), then it should be listed under
${target.driver} or ${target.server}, instead of the common
${target}. For example, ${target.server}: LDFLAGS+=...means this
LDFLAGS list only applies when building a server.

5. Modify the config mode specific flags. If a flag should be added only for either
"release" or "debug", but not both, then users can append a .release or
.debug suffix to the corresponding XXXFLAGS variable to allow such config
mode specific flags. For example, CXXFLAGS.release += -myflag1
indicates -myflag1 will only be added to CXXFLAGS in release mode.
Similarly, CPPFLAGS.debug += -DMY_MACRO and LDFLAGS.debug += -
LMySearchPath indicates -DMY_MACRO and -LMySearchPath will only be
added to CPPFLAGS and LDFLAGS in debug mode.

For more information on implicit variables CXXFLAGS, CPPFLAGS, LDFLAGS,
LDLIBS used in GNUmake, see the GNUmake documentation at
https://www.gnu.org/software/make/manual/html_node/Implicit-Variables.html.

Example:

SDK 10.1 [DriverFolder]/Source/GNUmakefile`
Add a flag only for connector
#...
${target.driver} : CPPFLAGS += -DMY_DRIVER_MACRO
Add preprocessor flags only for connector in debug mode

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
336

Compiling Your Connector

https://www.gnu.org/software/make/manual/html_node/Implicit-Variables.html
http://www.magnitude.com/

${target.driver} : LDFLAGS.debug += -LMyLibSearchPath_Driver_
Debug/
Add linker flag only for connector in release mode
${target.driver} : LDFLAGS.release += -LMyLibSearchPath_
Driver_Release/
Add preprocessor flags only for server in release mode
${target.server} : LDFLAGS.release += -LMyLibSearchPath_
Server_Release/
Add a CXXFLAG for both connector and server in all config
modes
${target} : CXXFLAGS += -Weffc++
Add a CXXFLAG for both connector and server only in debug
mode
${target} : CPPFLAGS += -DMY_COMMON_MACRO
Add common search path
${target} : CPPFLAGS += $(addprefix -I, $. ${drvsrcdirs}
$./MyIncludeDir1 $./MyIncludeDir2)
#...

Comparing 10.0 and 10.1 variables:

The 10.1 variables involved in this step corresponds to variables in
[DriverFolder]/Source/Makefile_FLAGS.mak in 10.0:

Description Name in 10.1 Name in 10.0

list of header search paths CPPFLAGS COMMON_CFLAGS

preprocessor flags CPPFLAGS COMMON_CFLAGS

compiler flags CFLAGS, CXXFLAGS
CFLAGS

CXXFLAGSCFLAGS

linker flags LDFLAGS
BIN_LDFLAGS(_DEBUG)

SO_LDFLAGS(_DEBUG)

In 10.0, compiler and preprocessor flags that are common to all config mode
(release/debug) and target type (connector/server) are added to COMMON_CFLAGS in
[DriverFolder]/Source/Makefile_FLAGS.mak. As well, COMMON_CFLAGS are

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
337

Compiling Your Connector

http://www.magnitude.com/

always added into the implicit CLFAGS variable. Target-type or config-mode specific
flags are conditionally appended to CFLAGS using if-else blocks.

Also in 10.0, linker flags that are common to all config mode and target type are added
to COMMON_LDFLAGS. There are four other variables that represent the different
combinations of target-type and config-mode specific flags: BIN_LDFLAGS, BIN_
LDFLAGS_DEBUG, SO_LDFLAGS and SO_LDFLAGS_DEBUG . In 10.1, the target-type
specificity is represented as target-specific rules such as ${target.driver}:
LDFLAGS +=..., and the config-mode specificity is represented with a release or
debug suffix, such as ${target.server}: LDFLAGS.release +=....

Example

This example shows a 10.0 [DriverFolder]/Source/Makefile_FLAGS.mak
file that is roughly equivalent to the 10.1 GNUmakefile example above.
SDK 10.0 [DriverFolder]/Source/Makefile_FLAGS.mak
Common compiler and preprocessor flags
COMMON_CFLAGS = $(DMFLAGS) \
-I./MySourceDir1 \
-I./MySourceDir2 \
-I./MyIncludeDir1 \
-I./MyIncludeDir2 \
-DMY_COMMON_MACRO \
-Weffc++
ifeq ($(BUILDSERVER),exe)
Add conditional preprocessor flags for server
CFLAGS = $(COMMON_CFLAGS)
else
CFLAGS = $(COMMON_CFLAGS) -DMY_DRIVER_MACRO
endif
Define the common linker flags
COMMON_LDFLAGS = ...
#...
ifeq ($(BUILDSERVER),exe)
Config-mode specific linker flags for server
BIN_LDFLAGS = $(COMMON_LDFLAGS) -LMyLibSearchPath_Server_
Release/
BIN_LDFLAGS_DEBUG = $(COMMON_LDFLAGS)
else
Config-mode specific linker flags for connector
SO_LDFLAGS = $(COMMON_LDFLAGS) -LMyLibSearchPath_Driver_
Release/

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
338

Compiling Your Connector

http://www.magnitude.com/

SO_LDFLAGS_DEBUG = $(COMMON_LDFLAGS) -LMyLibSearchPath_
Driver_Debug/

Example Customized Makefile

This example shows a customized GNUmakefile that incorporates the modifications
described in this section. All modifications are preceded with a ### comment line.

Makefile for MyCustomDSII
#--------------- Target Definition
buildtype = $(if ${BUILDSERVER},server,connector)
target = ${target.${buildtype}}
Change the product names
target.driver = libMyCustomDSII${BITS}.${SO}
target.server = MyCustomDSIIServer${BITS}
Specify directories to all folders that contain source
files for this connector
drvsrcdirs = $./MySourceDir1 $./MySourceDir2
#----------------
.DEFAULT_GOAL := install
clean += ${target.driver} ${target.server}
bin.install : ${target}
Change default install location
DESTDIR.bin = $./../MyDirectory/${MODE}${BITS}
#---------------- Target dependencies.
Add source file specific to "connector"
${target.driver} : MyDriverSpecificSource1.o
Add a flag only for connector
${target.driver} : CPPFLAGS += -DMY_DRIVER_MACRO
Add a flag only for connector in debug
${target.driver} : CPPFLAGS.debug -DMY_DRIVER_DEBUG_MACRO
Add preprocessor flags only for connector in debug mode
${target.driver} : LDFLAGS.debug += -LMyLibSearchPath_Driver_
Debug/
Add linker flag only for connector in release mode
${target.driver} : LDFLAGS.release += -LMyLibSearchPath_
Driver_Release/
${target.driver} : LDLIBS += $(call Mutual, ${CORESDK.a}
${SQLENGINE.a} ${ODBCSDK.a})
${target.driver} : LDFLAGS += $(call LD.soname,$@)
${target.driver} : LDFLAGS += ${LD.exports}
Add source file specific to "server"

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
339

Compiling Your Connector

http://www.magnitude.com/

${target.server} : MyServerSpecificSource1.o
Add preprocessor flags only for server in release mode
${target.server} : LDFLAGS.release += -LMyLibSearchPath_
Server_Release/
Add preprocessor flags only for server in debug mode
${target.server} : LDFLAGS.release += -LMyLibSearchPath_
Server_Debug/
Add a third party library only for server
${target.server} : LDLIBS += -mythirdpartylib
Add release-specific flags linker flag
${target.driver} : LDFLAGS.release += -lmy_release_lib
${target.server} : CPPFLAGS += ${SERVERSDK_CPPFLAGS}
${target.server} : LDLIBS += $(call Mutual, ${CORESDK.a}
${SQLENGINE.a} ${SERVERSDK.a})
${target.server} : LDLIBS += ${OPENSSL_LDLIBS}
${target.server} :; ${LINK.o} -o $@ $^ ${LDLIBS}
Modify source file list shared by both "connector" and
"server"
${target} : MyCommonSource1.o MyCommonSource2.o
MyCommonSource3.o
Add a CXXFLAG for both connector and server in all config
modes
${target} : CXXFLAGS += -Weffc++
Add a CXXFLAG for both connector and server only in debug
mode
${target} : CPPFLAGS.debug += -DMY_COMMON_DEBUG_MACRO
Remove some default search paths and add user search
paths
${target} : CPPFLAGS += $(addprefix -I, $. ${drvsrcdirs}
$./MyIncludeDir1 $./MyIncludeDir2)
${target} : CPPFLAGS += ${CORESDK_CPPFLAGS} ${SQLENGINE_
CPPFLAGS} ${EXPAT_FLAGS}
${target} : LDLIBS += ${ICU_LDLIBS}
#--- Define search paths
vpath %.cpp ${drvsrcdirs}
vpath %.mm ${drvsrcdirs}

C++ on Windows

This section explains the different settings that are available on the Project Properties
page in Microsoft Visual Studio. For a full listing of all compiler options, see the
Microsoft MSDN documentation.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
340

Compiling Your Connector

http://www.magnitude.com/

You can use the sample projects from the 5 Day Guides as an example of how to build
your own custom connector. For a step-by-step example on how to build the sample
projects, see the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/.

Build as an ODBC Connector (a DLL) for Local Connections

The sample connectors discussed in the Build a C++ Connector in 5 Days documents
are set up to build as Windows DLLs. To build your own connector as a Windows DLL,
use the following settings:

1. Set configuration type to Dynamic Library (.dll):

Select Configuration Properties -> General -> Configuration Type.
2. Link against SimbaODBC.lib. Choose the correct version of the library for

release/debug, and whether MTDLL is used or not.

Select Configuration Properties -> Linker -> Input -> Additional
Dependencies.

3. Set the module definition file to Exports.def included in all sample
connectors:

Select Configuration Properties -> Linker -> Input Module Definition File.
4. Set the output file to a DLL name:

Select Configuration Properties -> Linker -> General -> Output File.
5. Include the DSI and Support include paths:

Select Configuration Properties -> C/C++ -> General -> Additional Include
Directories:

l $(SIMBAENGINE_DIR)\Include\DSI

l $(SIMBAENGINE_DIR)\Include\DSI\Client

l $(SIMBAENGINE_DIR)\Include\Support

l $(SIMBAENGINE_DIR)\Include\Support\Exceptions

l $(SIMBAENGINE_DIR)\Include\Support\TypedDataWrapper

Note:

If your custom connector uses the SQL Engine, see Build with the SQL Engine
for additional settings.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
341

Compiling Your Connector

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Build as a SimbaServer (an EXE) for Remote Connections

To build a connector as a stand-alone SimbaServer executable, use the following
settings:

1. Set configuration type to Application (.exe):

Select Configuration Properties -> General -> Configuration Type
2. Link against SimbaServer.lib. Choose the correct version of the library for

release/debug, and whether MTDLL is used or not.

Select Configuration Properties -> Linker -> Input -> Additional
Dependencies.

For more information on these settings, see Run-time library options.
3. Unset the module definition file:

Select Configuration Properties -> Linker -> Input-> Module Definition File.
4. Set output file to an EXE name.

Select Configuration Properties-> Linker -> General Output File.
5. Include the DSI and Support include paths:

 Select Configuration Properties -> C/C++ -> General -> Additional Include
Directories:

l $(SIMBAENGINE_DIR)\Include\DSI

l $(SIMBAENGINE_DIR)\Include\DSI\Client

l $(SIMBAENGINE_DIR)\Include\Support

l $(SIMBAENGINE_DIR)\Include\Support\Exceptions

l $(SIMBAENGINE_DIR)\Include\Support\TypedDataWrapper

Note:

If your custom connector uses the SQL Engine, see Build with the SQL Engine
for additional settings.

Build with the SQL Engine

If your custom connector uses the SQL engine, use the following setting in addition to
those described in Build as an ODBC Connector (a DLL) for Local Connections or
Build as a SimbaServer (an EXE) for Remote Connections.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
342

Compiling Your Connector

http://www.magnitude.com/

1. Link against SimbaEngine.lib:

Select Configuration Properties -> Linker -> Input -> Additional
Dependencies.

2. Include the SQLEngine include paths:

 Select Configuration Properties -> C/C++ -> General -> Additional Include
Directories:

l $(SIMBAENGINE_DIR)\Include\SQLEngine

l $(SIMBAENGINE_DIR)\Include\SQLEngine\AETree

l $(SIMBAENGINE_DIR)\Include\SQLEngine\DSIExt

Run-time library options

Each Simba library file has a Debug, Debug_MTDLL, Release and Release_MTDLL
version. You an choose to link against any of these versions. In order to successfully
link against your chosen version of the library, your project settings must match some
of the settings used to build the library:

Debug

The Debug version of the Simba libraries are the debug version that uses a statically
linked C++ runtime. To use this version of the library:

1. In Configuration Properties -> C/C++-> Preprocessor -> Preprocessor
Definitions, include _DEBUG.

2. In Configuration Properties -> C/C++ -> Code Generation -> Runtime Library,
select Multi-threaded Debug (/MTd).

Debug_MTDLL

The Debug_MTDLL version of the Simba libraries are the debug version that uses a
dynamically linked C++ runtime. To use this version of the library:

1. In Configuration Properties -> C/C++-> Preprocessor -> Preprocessor
Definitions, include _DEBUG.

2. In Configuration Properties -> C/C++ -> Code Generation -> Runtime Library,
select Multi-threaded Debug DLL (/MDd).

Release

The Release version of the Simba libraries are the release version that uses a
statically linked C++ runtime. To use this version of the library:

1. In Configuration Properties -> C/C++-> Preprocessor -> Preprocessor
Definitions, include _NDEBUG.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
343

Compiling Your Connector

http://www.magnitude.com/

2. In Configuration Properties -> C/C++ -> Code Generation -> Runtime Library,
select Multi-threaded(/MT).

Release_MTDLL

The Release_MTDLL version of the Simba libraries are the release version that uses
a dynamically linked C++ runtime. To use this version of the library:

1. In Configuration Properties -> C/C++-> Preprocessor -> Preprocessor
Definitions, include _NDEBUG.

2. In Configuration Properties -> C/C++ -> Code Generation -> Runtime Library,
select Multi-threaded DLL (/MD).

Character Set

In the Visual Studio “Configuration Properties” for your DSII project, on the “General”
property page, ensure that the “Character Set” property is set to “Use Unicode
Character Set”. This is the default setting used in the sample connector projects.

C# on Windows

This section explains the different settings that are available on the Project Properties
page in Microsoft Visual Studio. For a full listing of all compiler options, see the
Microsoft MSDN documentation.

As of Simba SDK 10.2.1, the Simba .NET components are packaged as NuGet
(.nupkg) files. You should configure your NuGet environment to add the Simba SDK
as a package source using this directory: [INSTALL_DIRECTORY]\Bin\Release.

In this section, anything referring to referencing the Simba.DotNetDSI,
Simba.DotNetDSIExt, and Simba.ADO.NET assemblies can be interpreted as
referencing the corresponding NuGet packages. When building for .NET Core or .NET
Standard, it is strongly encouraged to only use the NuGet packages instead of directly
referencing the assemblies.

Most people use the C# SDK to build an ADO.NET provider, but you can also use the
C# SDK to write your DSII and build the project as an ODBC connector. The connector
can be built to support either local or remote connections, with or without the SQL
Engine.

You can use the sample projects from the 5 Day Guides as an example of how to build
your own custom connector. For a step-by-step example on how to build the sample
projects, see the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/.

Most of the settings described in the section C++ on Windows also apply to C#, but
building C# uses a different project for the .Net DSII code.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
344

Compiling Your Connector

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

DotNetDSI and DSII

When writing a C# DSII, you must create a new Visual Studio project for a managed
C# class library that does not include any of the settings described for a C++ DSII. Add
the following to the project:

l If the DSII uses the Simba SQLEngine, add the Simba.DotNetDSI and
Simba.DotNetDSIExt assemblies.

l If the DSII does not use the Simba SQLEngine, add the Simba.DotNetDSI
assembly.

The base classes from which you derive to code your DSII are all defined in these
assemblies. These assemblies can be used for both 32-bit and 64-bit connector
development.

Note:

If you are using the CLIDSI, you must match the bitness of your compiled C#
DLL to the bitness of the CLIDSI library that is being used.

When using your provider, server, or ODBC connector, you must register this
assembly in the Global Assembly Cache (GAC) of Windows.

Simba.NET

In order to build a pure C# ADO.NET provider, you only need your DotNet DSII project
and the Simba.DotNetDSI and Simba.ADO.NET assemblies.

Note:

When building a pure C# ADO.NET provider, you cannot use the Simba
SQLEngine. To support this deployment scenario, use SimbaServer and the
ODBC client.

When using Simba.NET to create an ADO.NET provider, you must extend the
following additional abstract classes.

l SCommand

l SCommandBuilder

l SConnection

l SConnectionStringBuilder

l SDataAdapter

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
345

Compiling Your Connector

http://www.magnitude.com/

l SFactory

l SParameter

These are part of the Simba.ADO.NET assembly, not the normal DotNet DSI.

You must extend the SConnectionStringBuilder subclass and add any
additional properties that are needed to establish a connection to your provider. For
example, see the Simba DotNetUltralight sample described in the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/.

The rest of the classes that you extend do not typically need to be modified.

When using your provider, the Simba.DotNetDSI and Simba.ADO.NET assemblies
should be registered in the Global Assembly Cache (GAC) of Windows.

Build as an ODBC Connector (a DLL) for local connections

This section explains how to build an ODBC connector for local connections, with or
without the Simba SQLEngine. In addition to the DotNet DSII project, you must create
a CLIDSI project that provides the bridge between the native C++ Simba ODBC
libraries and your CustomerDotNetDSII.dll assembly:

1. Follow the instructions in Build with the SQL Engine , including all the specified
libraries.

2. Include the library CLIDSI_$(ConfigurationName).lib.

This library forms the bridge between the unmanaged and managed DSI
classes.

3. Enable Common Language Runtime Support (/clr) by selecting the following
option:

Configuration Properties -> General -> Common Language Runtime Support
4. Implement the factory function that constructs your IDriver object:

Simba::DotNetDSI::IDriver^ Simba::CLIDSI::LoadDriver()
{

return gcnew CustomerDotNetDSII::CustomerDSIIDriver();
}

The output of this project is your custom connector DLL, for example
CustomerCLIDSIDriver.dll. This is the actual ODBC connector which will load
your CustomerDotNetDSII.dll assembly.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
346

Compiling Your Connector

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Build as a SimbaServer (an EXE) for Remote Connections

This section explains how to build an ODBC connector for remote connections, with or
without the Simba SQLEngine.

In addition to the DotNet DSII project, you must create a CLIDSI project that provides
the bridge between the native C++ Simba ODBC libraries and your
CustomerDotNetDSII.dll assembly:

1. Follow the instructions in Build with the SQL Engine, including all the specified
libraries.

2. Include the library CLIDSI_$(ConfigurationName).lib.

This library forms the bridge between the unmanaged and managed DSI
classes.

3. Enable Common Language Runtime Support (/clr) by selecting the following
option:

Configuration Properties -> General -> Common Language Runtime Support
4. Implement the factory function that constructs your IDriver object:

Simba::DotNetDSI::IDriver^ Simba::CLIDSI::LoadDriver()
{

return gcnew CustomerDotNetDSII::CustomerDSIIDriver();
}

The output of this project is your custom connector DLL, for example
CustomerCLIDSIDriver.dll. This is the actual ODBC connector which will load
your CustomerDotNetDSII.dll assembly.

C# on Linux, Unix, and macOS

Simba.NET may be used to build pure C# ADO.NET providers for anywhere that .NET
Core is available. All of the above in the Simba.NET section still applies.

CLIDSI cannot be used to build ODBC connectors for non-Windows platforms.

Java on Windows

This section explains how to build a connector written in Java on Windows platforms.

You can use the sample projects from the 5 Day Guides as an example of how to build
your own custom connector. For a step-by-step example on how to build the sample
projects, see the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
347

Compiling Your Connector

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Options for Writing a Connector in Java

As explained in Implementation Options , you can write a custom ODBC or JDBC
connector in Java using the following methods:

l Use Java to write a DSII for an ODBC connector, and connect it to the C++ SDK
using a JNI component.

This option can be implemented with or without the C++ Simba SQLEngine.
l Use Java to write a DSII for an JDBC connector.

This option can be implemented with or without the Java Simba SQLEngine.

The compilation instructions for these two methods are described below.

Build a Pure-Java JDBC Connector

This type of connector can optionally use the Java SQL Engine. You can use it with or
without the Java Simba SQLEngine.

Building a JDBC Connector for SQL-Capable Data Stores

The following steps describe how to build a pure-Java JDBC connector that does not
use the SQL Engine:

1. Ensure that the SimbaJDBC JAR file, located at [INSTALL_
DIRECTORY]\DataAccessComponents\Lib, is in the classpath.

2. Create your connector DSII JAR file.
3. No additional libraries need to be linked.

The JavaUltraLight sample connector shows how to implement and build this type of
connector.

Building with the Java Simba SQLEngine

To build a pure-Java JDBC connector that uses the Java SQL engine, follow the steps
in Building a JDBC Connector for SQL-Capable Data Stores above, and also include
the SimbaSQLEngine.jar in your build process.

The JavaQuickJson sample connector shows how to implement and build this type of
connector. In this sample connector, the ANT build script packages the pre-compiled
files with those of the DSII.

Build Java DSII for an ODBC Connector

This type of connector uses a JNI bridge to connect to the C++ API components. You
can use it with or without the C++ Simba SQLEngine.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
348

Compiling Your Connector

http://www.magnitude.com/

Building as an ODBC Connector (a DLL) for Local Connections

The following steps describe how to build an ODBC connector that doesn't use the
SQL Engine and is not built for client-server deployments:

1. Include the settings for C++ connectors described in C++ on Windows.
2. Include the additional directory for the JVM library that is under $(JAVA_

HOME)\lib:

Configuration Properties -> Linker -> General -> Additional Library Directories

Note:

JAVA_HOME is an environment variable that should refer to the 32-bit
Java installation directory when building the 32-bit ODBC connector or
the 64-bit Java installation directory when building the 64-bit ODBC
connector.

3. Link against SimbaJNIDSI_$(ConfigurationName).lib and jvm.lib:

Configuration Properties -> Linker -> Input -> Additional Dependencies

Set ConfigurationName to one of the following values: Debug, Debug_MTDLL,
Release or Release_MTDLL. For information on these options, see Run-time
library options.

4. Include the general and Java include paths:

Configuration Properties -> C/C++ -> General -> Additional Include
Directories:

l $(SIMBAENGINE_DIR)\Include\JNIDSI

l $(JAVA_HOME)\include

l $(JAVA_HOME)\include\win32

The sample connectors discussed in the document Build a Java ODBC Connector in 5
Days are configured to build as Windows DLL’s.

Building as a SimbaServer (an EXE) for Remote Connection

To build a connector as a stand-alone SimbaServer executable, follow the steps in
Building as an ODBC Connector (a DLL) for Local Connections with the additional C++
settings described in Build as a SimbaServer (an EXE) for Remote Connections.

Building with the C++ Simba SQLEngine

To build a Java ODBC connector that uses the C++ SQL engine, follow the steps in
Build as an ODBC Connector (a DLL) for Local Connections above with the additional

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
349

Compiling Your Connector

http://www.magnitude.com/

SQL Engine settings described in Build with the SQL Engine.

The JavaQuickstart sample connector shows how to implement and build this type of
connector.

C++ on Linux, Unix, and macOS

The Simba SDK include a sample makefile with each of the sample connector
projects. You can use this makefile to build the sample connector, then use it as a
template for creating a makefile for your custom connector.

Note:

We recommend that you use the script mk.sh in the Source directory of your
sample connector project. It is not recommended to use the makefile directly.

Build Configurations

The sample makefiles include targets for both debug and release versions of the
connectors and the SimbaServer. The output location, or file path, indicates the
bitness, compiler, and platform version. For example, when the debug version of the
Quickstart connector is build on a 64-bit Linux machine with the gcc compiler, the
resulting shared object is located in:
.../Bin/Linux_x86_gcc/debug64/libQuickstart64.so

Default Settings in the Sample Makefile

To help you compile and build the sample connectors on a variety of machines, the
sample shell script and sample makefiles automatically detect your machine's
operating system, bitness, and default compiler, then use the appropriate settings to
run the build. By default, the makefiles build a release version that is dynamically
linked to dependencies.

You can override these default settings by specifying them in the mk.sh command
line, or by setting them as environment variables.

Changing the version of XCode on macOS

By default, on macOS the sample makefile detects the highest available version of the
XCode compiler, and uses that to build the sample connectors. If you download a
different version of the Simba SDK, you must set the active developer directory to
match.

Example:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
350

Compiling Your Connector

http://www.magnitude.com/

Assume you have both XCode 6 and XCode 7 on your machine, and you download the
XCode 6 version of the Simba SDK. The sample makefile tries to use the XCode7
compiler, but this fails. Set the environment variable DEVELOPER_DIR to configure
the active developer directory:
export DEVELOPER_DIR=/Application/Xcode6.1.app

Overriding Default Settings

The following table describes the options that you can use to override the default
behaviour of the sample makefiles. Multiple options are allowed, for example:
./mk.sh MODE=debug BITS=32

Option Description

BUILDSERVER

Set to 1 to build a server (.exe) instead of a connector (.so or
.dylib). By default, a connector is built.

Example:
./mk.sh BUILDSERVER=1

CXX

On Solaris, specify the compiler to use. Allowed values are
the name of the compiler, for example g++, g++44, or g++59.

Example:
./mk.sh CXX=g++59

SDK_PLATFORM

Specifies the subpath to the dependencies. This value is
autodetected by default, but you can override it.

The path where the dependencies are installed contains
architecture information and the compiler version. For
example, the lCU libraries might be installed at
ThirdParty/icu/53.1/centos5/gcc4_4. The Simba
SDK autodetects this information to allow your connector to
use the correct dependencies. You can override this
information to specify dependencies in a different location.

Example:
./mk.sh SDK_PLATFORM=Darwin/xcode7_2

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
351

Compiling Your Connector

http://www.magnitude.com/

Option Description

MODE

Set to debug to build the debug version of the connector. By
default, the release version of the connector is built.

Example:
./mk.sh MODE=debug

BITS

Specifies the bitness of the connector you wish to build. By
default, the makefiles build a connector that matches the
bitness of your operating system, but you can override this
option. For example, when building on a 64-bit platform, you
can use this option to specify a 32-bit connector.

Allowed values are 32, 64, and 3264.

Use 3264 to indicate an OSX universal binary that combines
32 and 64 bit code.

Example:
./mk.sh BITS=32

ICU_STATIC

Set to 1 to statically link to the ICU library. By default, the
makefiles build a connector that dynamically links to the ICU
library.

Example:
./mk.sh ICU_STATIC=1

OPENSSL_
STATIC

Set to 1 to statically link to the OpenSSL library. By default,
the makefiles build a connector that dynamically links to the
OpenSS library.

Example:
./mk.sh ICU_STATIC=1

Build an ODBC Connector (a Shared Object) for Local Connections

This section describes the settings you can use to build your custom ODBC connector
for local connections (that is, not as a SimbaServer). You can build with or without the
Simba SQLEngine. This section references the core makefile for the sample
connectors, ${SIMBAENGINE_DIR}/Makefiles/kit.mk.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
352

Compiling Your Connector

http://www.magnitude.com/

Note:

For each of the steps below, be sure to include the correct libraries for the
compiler, bitness, and release/debug configuration.

1. Set the compiler and linker to build a shared object. The exact option depends on
the compiler.

2. Include the Simba Core SDK libraries, as specified by the variable CORESDK.a
in the file ${SIMBAENGINE_DIR}/Makefiles/kit.mk. Be sure to include the
correct libraries for the compiler, bitness, and release/debug configuration. For
example:

l libCore.a

l libSimbaDSI.a

l libSimbaSupport.a

3. Include the Simba ODBC libraries, as specified by the variable ODBCSDK.a. For
example:

l libSimbaODBC.a

4. If your connector uses the SQL Engine, include the SQL Engine libraries, as
specified by the variable SQLENGINE.a. For example:

l libAEProcessor.a

l libDSIExt.a

l libExecutor.a

l libParser.a

5. Include the Core SDK include paths, as specified by the variable CORESDK_
CPPFLAGS. For example:

l ${SIMBAENGINE_DIR}/Include/DSI

l ${SIMBAENGINE_DIR}/Include/DSIClient

l ${SIMBAENGINE_DIR}/Include/Support

l ${SIMBAENGINE_DIR}/Include/Support/Exceptions

l ${SIMBAENGINE_DIR}/Include/Support/TypedDataWrapper

l ${SIMBAENGINE_DIR}/ThirdParty/odbcheaders

6. Include the ICU include paths, as specified by the variable ICU_LDLIBS. The
path and file name contain version, bitness, and release/debug information. For
example:

l ${SIMBAENGINE_DIR}hirdParty/icu/53.1.x/Linux_x86_
gcc/release64/lib

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
353

Compiling Your Connector

http://www.magnitude.com/

7. If your connector uses the SQL Engine, include the SQL Engine and expat
include paths, as specified by the variables SQLENGINE_CPPFLAGS and
EXPAT_FLAGS in the kit.mk file. Note that the Expat directory contains a
version number. For example:

l ${SIMBAENGINE_DIR}/Include/SQLEngine

l ${SIMBAENGINE_DIR}/Include/SQLEngine/AETree

l ${SIMBAENGINE_DIR}/Include/SQLEngine/DSIExt

l ${SIMBAENGINE_DIR}/Include/ThirdParty/Expat/2.2.0

Build as a SimbaServer (an EXE) for Remote Connections

This section describes the settings you can use to build your custom ODBC connector
as a SimbaServer. You can build with or without the Simba SQLEngine. This section
references the core makefile for the sample connectors, ${SIMBAENGINE_
DIR}/Makefiles/kit.mk.

Note:

For each of the steps below, be sure to include the correct libraries for the
compiler, bitness, and release/debug configuration.

1. Set the compiler and linker to build an application (.exe). The exact option
depends on the compiler.

2. Include the Simba Core SDK libraries, as specified by the variable CORESDK.a
in the file ${SIMBAENGINE_DIR}/Makefiles/kit.mk. Be sure to include the
correct libraries for the compiler, bitness, and release/debug configuration. For
example:

l libCore.a

l libSimbaDSI.a

l libSimbaSupport.a

3. Include the Simba Server libraries, as specified by the variable SERVERSDK.a.
For example:

l libSimbaCSCommon.a

l libSimbaServer.a

l libSimbaServerMain.a

4. If your connector uses the SQL Engine, include the SQL Engine libraries, as
specified by the variable SQLENGINE.a. For example:

l libAEProcessor.a

l libDSIExt.a

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
354

Compiling Your Connector

http://www.magnitude.com/

l libExecutor.a

l libParser.a

5. Include the Core SDK include paths, as specified by the variable CORESDK_
CPPFLAGS. For example:

l ${SIMBAENGINE_DIR}/Include/DSI

l ${SIMBAENGINE_DIR}/Include/DSIClient

l ${SIMBAENGINE_DIR}/Include/Support

l ${SIMBAENGINE_DIR}/Include/Support/Exceptions

l ${SIMBAENGINE_DIR}/Include/Support/TypedDataWrapper

l ${SIMBAENGINE_DIR}/ThirdParty/odbcheaders

6. Include the Server SDK include paths, as specified by the variable SERVERSDK_
CPPFLAGS. For example:

l ${SIMBAENGINE_DIR}/Include/Server

7. Include the ICU include paths, as specified by the variable ICU_LDLIBS. The
path and file name contain version, bitness, and release/debug information. For
example:

l ${SIMBAENGINE_DIR}/ThirdParty/icu/53.1.x/Linux_x86_
gcc/release64/lib

8. Include the Open SLL include paths, as specified by the variable OPENSSL_
LDLIBS. The path and file name contain version, bitness, and release/debug
information. For example:

l ${SIMBAENGINE_DIR}/ThirdParty/openssl/1.1.0/Linux_x86_
gcc/release64/lib

9. If your connector uses the SQL Engine, include the SQL Engine and expat
include paths, as specified by the variables SQLENGINE_CPPFLAGS and
EXPAT_FLAGS in the kit.mk file. Note that the Expat directory contains a
version number. For example:

l ${SIMBAENGINE_DIR}/Include/SQLEngine

l ${SIMBAENGINE_DIR}/Include/SQLEngine/AETree

l ${SIMBAENGINE_DIR}/Include/SQLEngine/DSIExt

l ${SIMBAENGINE_DIR}/Include/ThirdParty/Expat/2.2.0

Related Topics

5 Day Guides at http://www.simba.com/resources/sdk/documentation/

SimbaClientServer User Guide at
http://www.simba.com/resources/sdk/documentation/

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
355

Compiling Your Connector

http://www.simba.com/resources/sdk/documentation/
http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Productizing Your Connector

In order to package your custom connector as a product for end customers, you may
want to finish rebranding the configuration information and error messages. You also
need to include the required dependencies in the install package, and handle
configuration on the customer's machine during installation.

Packaging Your Connector

This section explains which files need to be included with your custom connector
package, and what configuration steps must be performed on the customer machine in
order for customers to install and use your custom connector.

The requirements for local connectors are included in this section. For client-server
connectors, see the SimbaClientServer User Guide at
http://www.simba.com/resources/sdk/documentation/.

C++ On Windows

This section explains how to package connectors written in C++ and built on Windows
platforms.

1. Include the connector DLL and any additional DLLs that you added.
2. Include the ICU DLLs from [INSTALL_

DIRECTORY]\DataAccessComponents\ThirdParty\icu\53.1.x\<
PLATFORM>\<CONFIGURATION>\lib\.

l For 32-bit connectors, include sbicudt53_32.dll, sbicuin53_
32.dll, and sbicuuc53_32.dll.

l Or, for 64-bit connectors, include sbicudt53_64.dll, sbicuin53_
64.dll, and sbicuuc53_64.dll.

3. Include the error message files from [INSTALL_
DIRECTORY]\DataAccessComponents\ErrorMessages. Include the
subdirectories for the languages that you want your connector to support.

4. Create the following key in the Windows registry:
l For 32-bit connectors on 32-bit machines, or 64-bit connectors on 64-bit
machines, create the key HKEY_LOCAL_
MACHINE\SOFTWARE\Simba\Quickstart\Driver, replacing Simba with
your company name and Quickstart with your connector name.

l For 32-bit connectors on 64-bit machines, create the key HKEY_LOCAL_
MACHINE\SOFTWARE\Wow6432Node\Simba\Quickstart\connector,
replacing Simba with your company name and Quickstart with your
connector name.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
356

Productizing Your Connector

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Add the following entries:
l DriverManagerEncoding = UTF-16
l ErrorMessagesPath = <Path to the parent directory where error message
files are located>

l (OPTIONAL) LogLevel = 0
l (OPTIONAL) LogPath = <Path to directory to store the log files>

5. Create the following key in the Windows registry:
l For 32-bit connectors on 32-bit machines, or 64-bit connectors on 64-bit
machines, create the key HKEY_LOCAL_
MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers.

l For 32-bit connectors on 64-bit machines, create the key HKEY_LOCAL_
MACHINE\SOFTWARE\Wow6432Node\ODBC\ODBCINST.INI\ODBC
Drivers.

Add the following entry:
l <DRIVER_NAME>=Installed

6. Create the following key in the Windows registry:
l For 32-bit connectors on 32-bit machines, or 64-bit connectors on 64-bit
machines, create the key HKEY_LOCAL_
MACHINE\SOFTWARE\ODBC\ODBCINST.INI\QuickstartDSIIDriver,
replacing QuickstartDSIIDriver with the name of your connector.

l For 32-bit connectors on 64-bit machines, create the key HKEY_LOCAL_
MACHINE\SOFTWARE\Wow6432Node\ODBC\ODBCINST.INI\Quickst
artDSIIDrivers, replacing QuickstartDSIIDriver with the name of your
connector.

Add the following entries, ensuring you include the correct path for either the 32-
bit or the 64-bit connector:

l Driver=<Full path to the connector DLL>
l Description=<Brief description of your connector>
l Setup=<Full path to the 32-bit connector configuration dialog DLL>

For an explanation of the registry keys that are created for the sample connectors, see
Examine the Windows Registry and Update the Windows Registry in the 5 Day Guides
at http://www.simba.com/resources/sdk/documentation/.

C++ On Linux, Unix, and macOS

This section explains how to package drivers written in C++ and built on Linux, Unix
and macOS platforms.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
357

Productizing Your Connector

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

1. Include the connector shared object and any additional shared objects that you
added.

2. Include all ICU shared objects from [INSTALL_
DIRECTORY]/DataAccessComponents/ThirdParty/icu/53.1.x/<
PLATFORM>/<CONFIGURATION>/lib.

3. Include the error message files from [INSTALL_
DIRECTORY]/DataAccessComponents/ErrorMessages. Include the
subdirectories for the languages that you want your connector to support.

4. Add the following entries to your connector's .ini configuration file.
l DriverManagerEncoding=UTF-16 (or UTF-32, depending on the driver
manager being used)

l ErrorMessagesPath=<Path to the directory where error
message file is located>

l ODBCInstLib=<Full path to the Driver Manager’s
ODBCInst library>

l (OPTIONAL) LogLevel=0

l (OPTIONAL) LogPath=<Path to directory to store the log
files>

5. Add the following entries to .odbcinst.ini:
l <DRIVER_NAME>=Installed

l [<DRIVER_NAME>]

l Driver=<Full path to the connector shared library>

l Description=<Brief description of your connector>

For an explanation of the configuration files that are created for the sample
connectors, see Configure the Connector and Data Source and Configure Your
Custom Connector and Data Source in the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/.

C# On Windows

This section explains how to package connectors written in C#.

Packaging Connectors Built With Simba.NET

This section explains how to package connectors written in C# with the Simba.NET
component.

1. Include the C# connector DLL.
2. Include Simba.DotNetDSI.dll and Simba.ADO.Net.dll from [INSTALL_

DIRECTORY]\Bin\Win.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
358

Productizing Your Connector

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

3. Using gacutil.exe, install the following DLLs to the Global Assembly Cache
(GAC) on the target machine:

l Simba.DotNetDSI.dll

l Simba.ADO.Net.dll

l Driver’s C# DLL

The DLLs can be installed using the following commands:
l gacutil.exe /i Simba.DotNetDSI.dll

l gacutil.exe /i Simba.ADO.Net.dll

l gacutil.exe /i YourDriver.dll

If you need to reinstall a DLL to the GAC, you have to uninstall it first using the
following command:

l gacutil.exe /u Simba.DotNetDSI

Note:

The .dll extension is removed from the name when uninstalling a
DLL from GAC.

Packaging Connectors Built With Simba.NET using .NET Core

l Include the entire contents of the output directory, except .pdb files.
l This will include your C# connector .dll, Simba.DotNetDSI.dll,
Simba.ADO.NET.dll, and all other dependency .dll files.

l Unlike .NET Framework providers, this does not need to be installed in the GAC.

Packaging Connectors Built With Simba.NET using .NET Standard

l Providers built targeting .NET Standard should be packaged the same as .NET
Core providers. However, they may also be installed in the GAC to be used by
.NET Framework applications.

l Install Simba.DotNetDSI.dll, Simba.ADO.NET.dll, and
YourDriver.dll into the GAC as described earlier.

Packaging Connectors Built with CLI DSI and Simba SQLEngine

This section explains how to package connectors written in C# with the CLI DSI
component. The Simba SQLEngine component can optionally be included.

1. Include the requirements listed in the section C++ OnWindows
2. Include connector’s CLIDSI DLL in addition to the C# connector DLL.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
359

Productizing Your Connector

http://www.magnitude.com/

3. Include Simba.DotNetDSI.dll and Simba.DotNetDSIExt.dll from
[INSTALL_DIRECTORY]\Bin\Win.

4. In the registry, ensure the Driver entry is the full path to the C++ CLIDSI DLL, not
to the C# DLL.

5. Using gacutil.exe, install the following DLLs to the Global Assembly Cache
(GAC) on the target machine:

l Simba.DotNetDSI.dll

l Simba.DotNetDSIExt.dll

l Driver’s C# DLL

The DLLs can be installed using the following commands:
l gacutil.exe /i Simba.DotNetDSI.dll

l gacutil.exe /i Simba.DotNetDSIExt.dll

l gacutil.exe /i YourDriver.dll

If you need to reinstall a DLL to the GAC, you have to uninstall it first using the
following command:

l gacutil.exe /u Simba.DotNetDSI (NOTE: the .dll extension is removed from
the name when uninstalling a DLL from GAC)

C# On Linux, Unix, and macOS

Packaging is the same as .NET Core in the above section.

Java Packaging on Windows

This section explains how to package connectors written in Java and built on the
Windows platform.

Packaging JDBC Connectors Built With SimbaJDBC

This section explains how to package Java connectors built with the SimbaJDBC
component.

1. Include the SimbaJDBC JAR file located at [INSTALL_
DIRECTORY]\DataAccessComponents\Lib

2. Include the Java connector’s JAR file.
3. If your connector uses the Java Simba SQLEngine, include the

SimbaSQLEngine JAR file located at [INSTALL_
DIRECTORY]\DataAccessComponents\Lib.

Packaging Java ODBC Connectors Built With JNI DSI and/or SQLEngine

This section explains how to package JDBC connectors built with the SimbaJDBC
component.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
360

Productizing Your Connector

http://www.magnitude.com/

1. Include the requirements listed in the section C++ OnWindows
2. Include the connector’s JNIDSI DLL and the Java connector JAR file.
3. In the registry, ensure the Driver entry is the full path to the C++ CLIDSI DLL, not

the connector’s Java JAR file.
4. Create the following key in the Windows registry:

l For 32-bit connectors on 32-bit machines, or 64-bit drivers on 64-bit
machines, create the key HKEY_LOCAL_
MACHINE\SOFTWARE\Simba\Quickstart\Driver, replacing Simba with
your company name and Quickstart with your connector name.

l For 32-bit connectors on 64-bit machines, create the key HKEY_LOCAL_
MACHINE\SOFTWARE\Wow6432Node\Simba\Quickstart\Driver,
replacing Simba with your company name and Quickstart with your
connector name.

Add the following entry. If multiple options exist, separate them by a “|”
character. For example:
-Djava.class.path=<full path>\JavaQuickstart.jar>|-Xdebug:

l JNIConfig=<Java Virtual Machine (JVM) Configuration
options>

5. If -Djava.class.path is not specified in the JNIConfig, add or modify the
CLASSPATH environment variable:

l CLASSPATH=<Full path of the connector’s JAR file>

For example: <full path>\JavaQuickstart.jar

6. Add or modify the PATH environment variable to include the location of the Java
executable, as well as the 64-bit or 32-bit Java Virtual machine (Depending on
the bitness of JNIDSI connector).

Note:

For a Java Runtime Environment (JRE), the location of the JVM on 32-bit
Windows is usually in <JRE Path>\bin\client while on 64-bit it is usually in
<JRE Path>\bin\server.

Java Packaging On Linux, Unix, and macOS

This section explains how to package connectors written in Java and built on Linux,
Unix, or macOS platforms.

Packaging JDBC Connectors Built With SimbaJDBC

This section explains how to package Java connectors built with the SimbaJDBC
component.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
361

Productizing Your Connector

http://www.magnitude.com/

1. Include the SimbaJDBC JAR file located at [INSTALL_
DIRECTORY]\DataAccessComponents\Lib.

2. Include the Java connector’s JAR file.
3. If your connector uses the Java Simba SQLEngine, include the

SimbaSQLEngine JAR file located at [INSTALL_
DIRECTORY]/DataAccessComponents/Lib.

Packaging Java ODBC Connectors Built With JNI DSI and/or SQLEngine

This section explains how to package Java connectors written in Java and built with
the SimbaJDBC component.

1. Include the requirements listed in the section C++ On Linux, Unix, and macOS.
2. Include the connector’s JNIDSI library and the Java connector JAR file.
3. In the .ini file, ensure the Driver entry is the full path to the C++ CLIDSI DLL, not

the connector’s Java JAR file.
4. Add the following entry to your connector's .ini configuration file. If multiple

options, separate them with a “|” character.
l JNIConfig=<Java Virtual Machine (JVM) Configuration
options>

For example, -Djava.class.path=<full
path>/JavaQuickstart.jar>|-Xdebug

5. If -Djava.class.path is not specified in the JNIConfig, add or modify the
CLASSPATH environment variable:

l CLASSPATH=<Full path of the connector’s JAR file>

For example: <full path>\JavaQuickstart.jar

6. Add or modify the LD_LIBRARY_PATH (or equivalent) environment variable to
include the location of the Java executable, as well as the 64-bit or 32-bit Java
Virtual machine, depending on the bitness of JNIDSI connector.

For a Java Runtime Environment (JRE), the location of the JVM on 32-bit Unix is
usually in <JRE Path>/lib/<architecture>/client, where architecture
is amd64 on 64-bit linux, or i386 on 32-bit linux, or other values on other
platforms.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
362

Productizing Your Connector

http://www.magnitude.com/

Note:

The library path environment variable has the following values on the
different platforms:

l LD_LIBRARY_PATH on most Linux platforms
l SHLIB_PATH on HP/UX
l LIBPATH on AIX
l DYLD_LIBRARY_PATH on macOS

Related Topics

Including Error Message Files

Adding a DSN Configuration Dialog

You can add a custom dialog in the ODBC Data Source Administrator. This dialog is
displayed when users click Add, Remove, or Configure. By using your custom dialog,
customers can perform custom configuration of the ODBC connection without having
to modify the Windows registry or by editing the .ini files on Unix or Linux platforms.

To create a custom DSN configuration dialog, implement the connector setup DLL API
by implementing and exporting the ConfigDSN function:

BOOL INSTAPI ConfigDSN(

HWND in_parentWindow,
WORD in_requestType,
LPCSTR in_driverDescription,
LPCSTR in_attributes)

You can implement this in the connector shared library, or as a separate shared
library.

Note:

l If you build the configuration dialog as a separate DLL, we recommend
changing the extension from.dll to .cnf, as this is conventional practice.

l The QuickStart sample project provides an example of implementing
ConfigDSN and exporting it from within the connector DLL.

To get your setup function recognized by the ODBC Data Source Administrator, you
must add the Setup key to your connector’s entry in ODBCINST.INI in the registry.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
363

Productizing Your Connector

http://www.magnitude.com/

For an example of adding the Setup key, see C++ Packaging for Windows in the
Simba SDK Deployment Guide.

For more information on creating a DLL, refer to the Setup DLL API Reference and the
Installer DLL API Reference Function in the Microsoft ODBC Programmer’s
Reference.

Rebranding Your Connector

The sample connectors are branded with a default connector name, for example
Quickstart, and the default company name Simba. These names are visible to
customers in the following locations:

l The Windows registry
l The .ini configuration files on Linux, Unix, and macOS
l The vendor name in error messages

The Simba SDK allows you to rebrand your custom connector with the connector
name and company name of your choice. The 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/ provide detailed instructions on
how to use the rebranding functionality in Windows, Linux, Unix, and macOS.

Using INI Files for Connector Configuration on Windows

OnWindows platforms, ODBC connectors normally retrieve configuration information
from the Windows registry. As an alternative, your connector can retrieve its
connector-specific configuration information from an .ini file. This enables customers
to deploy multiple versions of the DLL, each with a different version of the connector-
specific configuration information. You can also specify that your connector to look for
the .ini file initially, then fall back to the registry if the file cannot be found.

You can use a configuration file, for example simba.quickstart.ini, to specify
the information that is normally retrieved from the
SOFTWARE\Simba\Quickstart\Driver registry key.

Note:

l The registry key and the file name can be rebranded with your own
company and connector name, but this example uses simba and
Quickstart for simplicity.

l This feature does not include using .ini files for information that is
stored in the \ODBC\ODBC.INI and \ODBC\ODBCINST registry keys.
You still need to configure these registry keys for your custom connector.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
364

Productizing Your Connector

https://msdn.microsoft.com/en-us/library/ms716480(v=vs.85).aspx
https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiRwua6x6bPAhVD9WMKHbreAgAQFggcMAA&url=https%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Flibrary%2Fms711031(v%3Dvs.85).aspx&usg=AFQjCNFskxnFOoFaC1armassFTIVfO3svA&bvm=bv.133700528,d.cGc
http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Step 1 - Create the simba.quickstart.ini file

Create a text file that contains all the information in the connector's HKEY_LOCAL_
MACHINE\SOFTWARE\Simba\Quickstart\Driver registry key. The file has the same
format as the simba.quickstart.ini file on Linux and Unix platforms.

Example - simba.quickstart.ini file

[Driver]
ErrorMessagesPath=C:\Drivers\Quickstart\Maintenance\10.1\Prod
uct\ErrorMessages
UnicodeDataPath=C:\Drivers\Quickstart\Maintenance\10.1\Produc
t\Setup
DriverLocale=en-US
DriverManagerEncoding=UTF-16
LogLevel=3
LogNamespace=
LogPath=C:\SimbaLogs

Step 2 - Update Simba::DSI::DSIDriverFactory()

In the Simba::DSI::DSIDriverFactory()method in the Main_Windows.cpp
file, replace the call to SetConfigurationBranding() with
SetConfigurationRegistryKey(), SetConfigurationIniFile(), and
SetModuleId(). These methods must be called before any parameter from the
SimbaSettingReader is accessed, because the configuration is loaded only once,
and cannot be reloaded.

You also need to provide the module ID, using the value provided to the DLLMain()
function that is called when the connector is loaded.

Example - DSIDriverFactory

//==============================
/// @brief Creates an instance of IDriver for a connector.
/// The resulting object is made available through
DSIDriverSingleton::GetDSIDriver().
/// @param out_instanceID Unique identifier for the IDriver
instance.
/// @return IDriver instance. (OWN)
//==============================
IDriver* Simba::DSI::DSIDriverFactory(simba_handle& out_
instanceID)
{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
365

Productizing Your Connector

http://www.magnitude.com/

out_instanceID = s_quickstartModuleId;

//Set the name of the INI file from which to load the
connector-specific configuration.
// If a file name is specified here, the SEN SDK will
first try to load the connector specific
// configuration from that INI file. If it can't find
the file, it will fall
// back to the registry, as described below.
// You can specify a relative path for the file name.
If the module ID (see below) is
// 0, then the path is relative to the current
working directory. If the module
// ID is non-zero, the path is relative to the
// directory where the DLL is located.

#if defined(SERVERTARGET)
SimbaSettingReader::SetConfigurationIniFile
(“simbaserver.quickstart.ini”);
#else
SimbaSettingReader::SetConfigurationIniFile
(“simba.quickstart.ini”);
#endif

// Set the module identifier provided in DLLMain().
//This allows the SDK to determine in which
// directory the connector DLL is located, which is
used to load INI file defined
// as relative path as described above.

SimbaSettingReader::SetModuleId(s_
quickstartModuleId);

// Use this setting to specify the registry key that
is used if the
// connector cannot find the .ini file.
// For example, if you use the value
"Simba\Quickstart", then

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
366

Productizing Your Connector

http://www.magnitude.com/

// the connector looks for the configuration
information at
// HKLM\SOFTWARE\Simba\Quickstart, or
//
HKLM\SOFTWARE\SOFTWARE\Wow6432Node\Simba\Quickstart
if
// running a 32-bit connector on 64-bit Windows).
// If the DSII is compiled as a connector, then it
will use \Driver as the final
// value in the registry path.
// If the DSII is compiled as a server, then it will
use \Server as the final
// value in the registry path.
// For example, a 64-bit connector would use
// HKLM\SOFTWARE\Simba\Quickstart\Driver to look up
the registry keys such as ErrorMessagesPath.

SimbaSettingReader::SetConfigurationRegistryKey
(“Simba\\Quickstart”);

// Set the server branding for this data source. This
will only be used if the DSII is compiled
// as a server and then installed as a service.
#if defined(SERVERTARGET) && defined(WIN32)
SimbaSettingReader::SetServiceName
("SimbaQuickstartService");
#endif

return new QSDriver();

}

Logging to Event Tracing for Windows (ETW)

By default, the Simba SDK logging functionality writes events and messages to text
files. You can develop your custom ODBC or JDBC connector log events and
messages to Event Tracing for Windows (ETW) instead. You can also enable it to
switch between file and ETW logging at runtime.

The basic steps are as follows:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
367

Productizing Your Connector

http://www.magnitude.com/

1. Define the provider GUID in your connector code
2. Use the ETWLogger Class in your connector code

For an example of how to implement ETW logging in the QuickStart sample OBBC
connector, see Example: Implementing ETW Logging.

Step 1 - Define the Provider GUID in your Connector Code

When creating a manifest file to define your provider, you created a provider GUID.
Add this GUID to the connector's main header file. If you have both 32 and 64-bit
connectors, you need to include both GUIDs. If your connector code is used on
multiple platforms, ensure the GUID is defined just for Windows platforms. For
example:

#if defined(_WIN64)
/// The 64-bit connector specific ETW provider GUID.
const GUID PROVIDER_GUID = {0x69bacf08, 0x09d0, 0x400a,
{0xab, 0xd8, 0x52, 0x06, 0xd4, 0xbd, 0x79, 0x39}};
#elif defined(WIN32)
/// The 32-bit connector specific ETW provider GUID.
const GUID PROVIDER_GUID = {0x9bbc191d, 0x1d80, 0x40d1,
{0xad, 0xab, 0xe1, 0x1b, 0x97, 0x3a, 0x1e, 0x90}};
#endif

Step 2 - Use the ETWLogger Class in your Connector Code

Change your custom connector code to use the ETWLogger class instead of the
DSIFileLogger class.

For example, in the Quickstart sample connector you would have the following
QSDriver constructor

QSDriver::QSDriver() : DSIDriver(), m_driverLog(new ETWLogger
(PROVIDER_GUID))
{

ENTRANCE_LOG(m_driverLog, "Simba::Quickstart",
"QSDriver", "QSDriver");
SetDriverPropertyValues();
...

}

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
368

Productizing Your Connector

http://www.magnitude.com/

Further Considerations

You may want to refine the example shown in Example: Implementing ETW Logging
with the additional functionality described in this section.

Understanding Log Levels in Windows ETW Logging

The Simba SDK supports six different log levels for file-based logging, and four
different log levels for ETW-based logging. The following table shows the mapping
between ETW log level and the LogLevel setting in the Windows registry or .ini file.

LogLevel setting ETW Log Level

1 1 (Fatal)

2 2 (Error)

3 3 (Warning)

4,5,6 4 (Debug, Information, Trace)

For example, if you configure LogLevel to 6, then Debug, Information, and Trace logs
are all logged as level 4 in the ETW logger.

Increasing the File Size

By default, the maximum size of the log files for ETW logging is 1028 KB. Subsequent
events are overwritten in the file. In order to see more events in the log file, you may
want to increase the maximum file size by selecting properties in the Event Viewer.

Set an Activity ID

By default, the activity ID for the events is set to 0. To change this activity ID to the
string of your choice, use ETWLogger::SetActivityId().

Enable logging for both 32-bit and 64-bit connectors

If you plan to ship a 32-bit and a 64-bit version of your connector, you need to create a
manifest file for each version. For example, create a QuickStart32.man and a
QuickStart64.man.

Important:

Be sure you create a different GUID for the 32-bit and the 64-bit manifest files.
Each manifest file must have its own, unique GUID.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
369

Productizing Your Connector

http://www.magnitude.com/

In the source code, define each provider GUID for the correct platform.

Example:
#if defined(_WIN64)
/// The 64-bit connector specific ETW provider GUID.
const GUID PROVIDER_GUID = {0x69bccf01, 0x08d0, 0x400a, {0xbb,
0xc8, 0x52, 0x06, 0xb4, 0xbd, 0x72, 0x39}};
#elif defined(WIN32)
/// The 32-bit connector specific ETW provider GUID.
const GUID PROVIDER_GUID = {0x9bbc737c, 0x1d70, 0x40d9, {0xad,
0xab, 0xe1, 0x8b, 0x17, 0x3a, 0x4e, 0x20}};
#endif

Allowing the user to switch between ETW and File logging

If you want allow your customers to switch between ETW logging and file logging, you
can create a registry key that defines the type of logging. Then in your code, instantiate
the correct logging class depending on the registry setting.

Related Topics

Example: Implementing ETW Logging

Example: Implementing ETW Logging

This example shows one way that you could configure ETW logging for the QuickStart
connector. The steps are:

l Step 1 - Create a Manifest File for the QuickStart Connector
l Step 2 - Create the Master Resources File
l Step 3 - Update the QuickStart Connector Code
l Step 4 - Configure ETW to Log QuickStart Events
l Step 5 - Generate Loggable Activity in the QuickStart Connector

Note:

This examples helps you get started. For more details, see Further
Considerations.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
370

Productizing Your Connector

http://www.magnitude.com/

Step 1 - Create a Manifest File for the QuickStart Connector

Create a manifest file to define the QuickStart connector as an event provider, then
compile the file to generate resources.

To create the manifest file:

1. Copy the following XML into a text editor:

<?xml version="1.0" encoding="UTF-16"?>
<instrumentationManifest xsi:s-
chem-
aLoca-
tion="http://schemas.microsoft.com/win/2004/08/events
eventman.xsd" xmlns-
s="http://schemas.microsoft.com/win/2004/08/events"
xmlns:win-
="h-
ttp://manifests.microsoft.com/win/2004/08/windows/events"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:trace-
="h-
ttp://schemas.microsoft.com/win/2004/08/events/trace">
<instrumentation>

<events>
<provider name="DriverName" guid="{MYGUID}" sym-

bol="DriverName" resourceFileName="Path to connector dll"
messageFileName="Path to connector dll">

<events>
<event symbol="DebugInfoTraceEvent" value="0"

version="0" channel="Admin" level="win:Informational" tem-
plate="AllEventsTemplate" mes-
sage="$(string.DriverName.event.0.message)">

</event>
<event symbol="ErrorEvent" value="1" ver-

sion="0" channel="Admin" level="win:Error" tem-
plate="AllEventsTemplate"
message="$(string.DriverName.event.1.message)">

</event>
<event symbol="FatalEvent" value="2" ver-

sion="0" channel="Admin" level="win:Critical" tem-
plate="AllEventsTemplate"
message="$(string.DriverName.event.2.message)">

</event>

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
371

Productizing Your Connector

http://www.magnitude.com/

<event symbol="WarnEvent" value="3" version="0"
channel="Admin" level="win:Warning" tem-
plate="AllEventsTemplate" mes-
sage="$(string.DriverName.event.3.message)">

</event>
</events>
<levels>
</levels>
<channels>

<channel name="Admin" chid="Admin" sym-
bol="Admin" type="Admin" enabled="true">

</channel>
</channels>
<templates>

<template tid="AllEventsTemplate">
<data name="message" inType-

e="win:UnicodeString" outType="xs:string">
</data>

</template>
</templates>

</provider>
</events>

</instrumentation>
<localization>

<resources culture="en-US">
<stringTable>
<string id="level.Warning" value="Warning">
</string>
<string id="level.Informational" value-

e="Information">
</string>
<string id="level.Error" value="Error">
</string>
<string id="level.Critical" value="Critical">
</string>
<string id="DriverName.event.3.message" value-

e="%1">
</string>
<string id="DriverName.event.2.message" value-

e="%1">
</string>

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
372

Productizing Your Connector

http://www.magnitude.com/

<string id="DriverName.event.1.message" value-
e="%1">

</string>
<string id="DriverName.event.0.message" value-

e="%1">
</string>

</stringTable>
</resources>

</localization>
</instrumentationManifest>

2. Save the file as Quickstart.man.
3. Replace every instance of DriverName with QuickStart.
4. Find and replace Path to connector dll with the complete path to your

connector. Be sure to use the correct DLL for debug, platform, and bitness.
5. Generate a new GUID and use it to replace MYGUID:

a. In Visual Studio, select Tools > Create Guid.
b. Select option 3 then select Copy.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
373

Productizing Your Connector

http://www.magnitude.com/

c. Paste the first line into the manifest file, and save the second line to paste
into your source code.

6. Save and close the Quickstart.man file.

To compile the manifest file:

1. Open a command prompt and navigate to the directory where your
Quickstart.man file is stored.

2. Run the following command:
"C:\Program Files (x86)\Windows Kits\8.1\bin\x64\MC"
Quickstart.man -um -z QuickstartEvents

The manifest file is compiled and the resource files are generated:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
374

Productizing Your Connector

http://www.magnitude.com/

Step 2 - Create the Master Resources File

Create a master resources file to consume the resources you generated in the
previous step.

To create the master resources file:

1. In the Source/Resources folder of your Visual Studio project, create a text file
called Master.rc.

2. Add this file to the connector's Visual Studio project:
a. Right click the Resources folder in the connector project in Visual Studio

and select Add > Existing Items
b. Browse to Resources folder, select the Master.rc file that you created, and

click Add.
3. In a text editor, open the Master.rc file and #include all of the .rc files in the

QuickStart project. Also include the files you generated in the previous step.
Save and close the file.

Example: Master.rc file
#include "Dialogs.rc"
#include "QuickstartVersion.rc"
#include "QuickstartEvents.rc"

4. In a text editor, open the Visual Studio project and remove references to any
resource files other than the Master.rc file.

Example: Remove the lines shown below
<ItemGroup>
<ResourceCompile Include="Resources\Dialogs.rc" />
<ResourceCompile Include="Resources\Master.rc" />
<ResourceCompile Include="Resources\QuickstartVersion.rc"
/>
</ItemGroup>

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
375

Productizing Your Connector

http://www.magnitude.com/

5. Update the QuickStart connector project:
a. In Visual Studio, right-click the QuickStart project and select Properties.
b. Select Configuration Properties > Resources and select General.
c. Change the Resource File Name field to $(IntDir)\Master.res .
d. Click Apply.

Step 3 - Update the QuickStart Connector Code

Modify the QuickStart connector code to use the ETWLogger class instead of the
default file logger class.

To use the ETW logger class:

1. In Visual Studio, open the QuickStart solution, then open the file Core > Include
> QSDriver.h.

2. Define the GUID you created earlier. This will be the connector's provider GUID.

Example: In QSDriver.h
namespace Simba
{

namespace Quickstart

{

const GUID PROVIDER_GUID = { 0xf77f8f1e, 0xb189, 0x49ed, { 0xa3, 0xd9,
0xab, 0x72, 0x39, 0x19, 0xd2, 0x17 } };

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
376

Productizing Your Connector

http://www.magnitude.com/

3. Open the QSDriver.cpp file and add the following line:
#include "ETWLogger.h"

4. In the QuickStart connector's constructor, change the existing logger to
ETWLogger. Pass in the PROVIDER_GUID.

Example:
QSDriver::QSDriver() : DSIDriver(), m_driverLog(new
ETWLogger(PROVIDER_GUID))

Step 4 - Configure ETW to Log QuickStart Events

Register the connector with ETW and enable logging.

To configure ETW to log QuickStartEvents:

1. Register the QuickStart connector as an ETW provider:
a. Open a command prompt with administrator privileges.
b. In the directory containing the Quickstart.man file, type the following

command:
wevtutil im Quickstart.man /resourceFilePath:"C:\Simba
Technologies\SimbaEngineSDK\10.1\Examples\Source\Quick
start\Bin\Windows_
vs2013\debug32md\QuickstartDSIIODBC32.dll"
/messageFilePath:"C:\Simba
Technologies\SimbaEngineSDK\10.1\Examples\Source\Quick
start\Bin\Windows_
vs2013\debug32md\QuickstartDSIIODBC32.dll"

2. Ensure the connector is configured for logging by setting the following registry
key to 6:>

l Use HKEY_LOCAL_MACHINE\SOFTWARE\Simba\Quickstart\Driver
for a 32-bit connector on a 32-bit machine or a 64-bit connector on a 64-bit
machine

l Or, use HKEY_LOCAL_
MACHINE\SOFTWARE\Wow6432Node\Simba\Quickstart\Driver\LogL

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
377

Productizing Your Connector

http://www.magnitude.com/

evel for a 32-bit connector on a 64-bit machine

3. Open Event Viewer by typing Event Viewer in the Start Menu.
4. In Event Viewer, expand Applications and Services Logs > Simba > DSII >

Quickstart and select Admin.

Note:

If nothing appears under Applications and Services Logs, wait a few
minutes for Event Viewer to populate.

5. Right-click on Admin and select Enable Log.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
378

Productizing Your Connector

http://www.magnitude.com/

Step 5 - Generate Loggable Activity in the QuickStart Connector

To see events logged in ETW, you need to configure the connector to start logging,
then use it for something such as establishing a connection.

To create activity that will be logged:

1. Navigate to the folder containing the ODBC Test application, by default:
C:\Program Files (x86)\Microsoft Data Access SDK 2.8\Tools

2. Navigate to the folder that corresponds to your connector’s architecture: amd64,
ia64 or x86.

Example:

If you built the 32-bit version of your connector on a 64-bit machine, select the
x86 version.

3. Click one:
l odbcte32.exe to launch the ANSI version
l Or, odbct32w.exe to launch the Unicode version.

Important:

Make sure that you run the correct version of the ODBC Test tool for
ANSI or Unicode and 32-bit or 64-bit.

4. In the ODBC Test tool, click Conn > Full Connect.
5. In Event Viewer, navigate to Applicationsand Services Logs > Simba > DSII >

Quickstart and select Admin.
6. The trace logs are recorded as events (you may need to wait a few minutes):

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
379

Productizing Your Connector

http://www.magnitude.com/

Related Topics

Logging to Event Tracing for Windows (ETW)

For information on rebranding the Simba registry key to your own company name, see
Rebranding Your Connector.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
380

Productizing Your Connector

http://www.magnitude.com/

Testing your DSII

During the development of your connector, you may want to test its functionality using
applications such as Microsoft Excel on Windows or iODBCTest on Linux. This section
explains how to use different applications to test your connector. It also explains how
to resolve common problems and errors messages that you may encounter at different
stages of development.

Testing On Windows

This section explains how to use Microsoft Access, Microsoft Excel, and the
ODBCTest tool to test your custom ODBC connector.

Testing With Microsoft Access

Running your connector against Microsoft Access is a good test to prove basic
functionality. Microsoft Access uses much of the ODBC API, including many of it's
edge cases.

Note:

To get the widest test coverage of the ODBC API, test your connector under
Microsoft Access by loading your data as linked tables.

To Test Your Custom ODBC Connector with Microsoft Access:

1. Open Access and create a new Blank Database.
2. Select External Tab -> More -> ODBC Database.
3. In the Get External Data – ODBC Database dialog, select Link to the data

source by creating a linked table.
4. In the Select Data Source dialog, select the Machine Data Source table and

choose your DSN. Click OK.
5. In the Link Tables dialog, select the tables you want to link to. Click OK.
6. In the Select Unique Record Identifier dialog, click OK without choosing any

specific field.
7. In the All Table panel, right click on a table name and click Open.

The data from the table appears in Microsoft Access.

Testing with Microsoft Excel

You can test your data source with Microsoft Excel by importing data using the Data
Connection Wizard.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
381

Testing your DSII

http://www.magnitude.com/

To Test Your Custom ODBC Connector with Microsoft Excel:

1. Open Excel and create a new blank workbook.
2. Select Data -> From Other Sources -> From Data Connection Wizard.
3. In the Data Connection Wizard dialog, select ODBC DSN and click Next.
4. In the ODBC data sources box, Select your DSN and click Next.
5. In the Table box, select a table and click Next and then click Finish.
6. In the Import Data dialog, select Table for how you want to view the data in the

workbook and click OK.

The data from the table appears in your Excel workbook.

Testing with ODBCTest

ODBCTest is a test application provided by Microsoft as part of the Microsoft Data
Access Components (MDAC) SDK and the Platform SDK. For more information about
MDAC, see What is MDAC?.

This application allows you to manually execute any SQL query. You can also use it to
directly call any method in the ODBC API. The full ODBC API is exposed through the
ODBCTest menus, allowing you to walk through each step of an ODBC API call and
viewing the results in real time.

The MDAC installation includes both ANSI and Unicode-enabled versions of ODBC
Test, for both 32-bit and 64-bit systems. The versions are clearly marked in the
Programs menu:

Note:

l Select the correct version of MDAC for the bitness of your connector and
ANSI or Unicode requirements.

l On 64-bit Windows, ensure that your DSNs are configured correctly.

Running your connector under the debugger with ODBCTest configured as the launch
application is an excellent way to test. You can set breakpoints in your DSII, and break

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
382

Testing your DSII

http://www.magnitude.com/

into them as various ODBC calls trigger corresponding DSII calls. You can break at
every DSII API call, and step through the execution of each of your DSII methods to
track down problems with precision.

For more information on using Visual Studio to debug into your custom ODBC
connector with ODBCTest, see the section Debug the Custom ODBC Connector in the
5 Day Guides at http://www.simba.com/resources/sdk/documentation/.

To Test Your Custom ODBC Connector with ODBCTest:

Before running this test, ensure you have already configured a DSN for your
connector. For more information on creating a DSN in the Windows registry for your
custom ODBC connector, see Update the Windows Registry in the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/.

1. Start the ODBCTest application, ensuring you run the correct version for ANSI or
Unicode and 32-bit or 64-bit.

2. To configure the application to use ODBC 3.52 menus, select Tools -> Options
menu.

3. Select the ODBC Menu Version -> ODBC 3.x.
4. Create a connection to your connector using the appropriate DSN you already

configured.
5. Select Connect -> Full Connect.

This option allocates the environment and connection handles, then opens the
connection.

6. Locate your DSN in the data source list.
7. Select OK. A new window appears with the message “Successfully connected to

DSN ‘<your connector name>”. The top half of the window allows you to enter
SQL queries to be executed. The bottom half displays the results.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
383

Testing your DSII

http://www.simba.com/resources/sdk/documentation/
http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Note:

If you see the error “SQLDriverConnect returned: SQL_ERROR=-1”, use
the following tips for troubleshooting. This error usually occurs because
the Windows Driver Manager cannot find or load the requested
connector’s DLL. Check the following:

l Does your DSN exist in the registry both as a registry key in
ODBC.INI and as a value in ODBC.INI\ODBC Data Sources?

l Does your connector exist in the registry both as a registry key
under ODBCINST.INI and as a value in ODBCINST.INI\ODBC
Drivers?

l Does your DSN have a Driver entry?
l At the path specified in the DSN’s Driver entry, does the specified
DLL exist?

8. Enter a simple SQL query by selecting Statement -> SQLExecDirect. Select OK
on the resulting dialog.

9. From the Results menu, select GetDataAll.
10. Review the results.
11. Select Catalog -> SQLTables. Select OK on the resulting dialog.

SQL Catalog functions work only if you have implemented the appropriate
MetadataSources.

12. Select Results -> GetDataAll.
13. Review the results

Related Topics

Debug the Custom ODBC Connector in the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/

Update the Windows Registry in the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/

Testing On Linux, Unix, and MacOS

This section explains how you can test your custom ODBC connector in Linux, Unix,
and macOS platforms.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
384

Testing your DSII

http://www.simba.com/resources/sdk/documentation/
http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

iODBCTest and iODBCTestW

The utilities iodbctest and iodbctestw are included with the iODBC driver manager
installation. You can use one these utilities to establish a test connection with your
connector and your DSN. Use iodbctest to test how your connector works with an
ANSI application, and use iodbctestw to test how your connector works with a Unicode
application.

For more information on how to use this utility, see www.iodbc.org. For an example of
how to use iODBCTest, see the section Connect to the Data Source in the Linux or
macOS version of the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/.

To Test Your Custom ODBC Connector with iODBCTest or iODBCTestW:

1. Use the following command to run iodbctest or iodbctestw:
./iodbctest

Or, ./iodbctestw

Note:

There are 32-bit and 64-bit installations of the iODBC driver manager
available. If you have only one version of the driver manager installed,
you will have the appropriate version of iodbctest (or iodbctestw).
However, if you have both 32-bit and 64-bit versions installed, you will
need to ensure that you are running the version from the correct
installation directory.

2. The program will ask you to enter an ODBC connect string. Type ? if you do not
remember the name of your DSN. Your ODBC connect string has the following
format:
DSN=<your_DSN_name>;UID=<user_id> (if
applicable);PWD=<your password> (if applicable)

3. If you have successfully connected, the prompt SQL> appears.
4. Test out some simple SELECT queries to see if your data is being retrieved

properly from your data source.

UnixODBC

iSql is a utility that is included with the UnixODBC driver manager installation. You can
use this utility to test a connection with your connector and your DSN.

For more information on how to use this utility, see www.iodbc.org.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
385

Testing your DSII

http://www.iodbc.org/
http://www.simba.com/resources/sdk/documentation/
http://www.unixodbc.org/
http://www.magnitude.com/

1. Run iSql:
./isql <DSN> <UID (if applicable)> <PWD (if applicable)>
<options (if applicable)>

2. If you have successfully connected, the prompt SQL> appears.
3. Test out some simple SELECT queries to see if your data is being retrieved

properly from your data source.

Related Topics

Connect to the Data Source in the Linux or macOS version of the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/

Driver Manager Encodings on Linux, Unix, and MacOS

On Linux, Unix, and macOS platforms, it is possible to specify that an application use a
particular driver manager. You may need to configure a connector to work with an
application, depending on which driver manager has been linked to the application.
The connector configuration file can set the DriverManagerEncoding setting to
indicate what type of Unicode is being passed to the connector from the driver
manager.

The following table outlines the Unicode setting to use:

Platform Bitness iODBC UnixODBC

Linux 32 UTF-32 UTF-16

Linux 64 UTF-32 UTF-16

Linux Itanium 64 UTF-32 UTF-16

AIX (PowerPC) 32 UTF-16 UTF-16

AIX (PowerPC) 64 UTF-32 UTF-16

macOS 32 UTF-32

macOS 64 UTF-32

HP-UX (Itanium) 32 UTF-32 UTF-16

HP-UX (Itanium) 64 UTF-32 UTF-16

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
386

Testing your DSII

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Platform Bitness iODBC UnixODBC

Solaris (SPARC) 32 UTF-32 UTF-16

Solaris (SPARC) 64 UTF-32 UTF-16

Solaris (x86) 32 UTF-32 UTF-16

Solaris (x86) 64 UTF-32 UTF-16

Solving Common Problems

This section contains information on debugging and troubleshooting your connector.

Process Can't Locate the DLL

A common cause of failure to connect to the data store is an ODBC connector or a
server process that cannot find the ICU DLL or shared object and refuses to start. This
can be frustrating to diagnose, so watch out for it. It is the general case of the
connector not being able to find all of its dependencies.

On Windows, this manifests itself as a “-1 Error”. One way to approach this problem is
with the Dependency Walker program. This free program identifies the items on which
an executable depends. For more information on dependency walker, see the MSDN
article at http://msdn.microsoft.com/en-us/magazine/bb985842.aspx. The application
can be installed from this location: http://dependencywalker.com/.

Connector Cannot Find the Data Store

Another cause of failure is the server or ODBC connector being unable to find your
data store. This is usually a case of configuring the connector or server incorrectly.
Make sure to include the right checks in your DSI implementation code to detect this
condition, and to return clear error messages to the user. This is a frustrating problem
to diagnose because the cause is often buried at the very bottom of the data access
stack.

AETree Log File Too Large

AETree logging is not considered part of the regular logging functionality in the Simba
SDK. Therefore, the LogFileSize parameter doesn't affect the size of the
AETree.log file.

You can enable and disable AETree logging by using the DSIEXT_DATAENGINE_
LOG_AETREES property as explained in Enable Logging in the Data Engine.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
387

Testing your DSII

http://msdn.microsoft.com/en-us/magazine/bb985842.aspx
http://dependencywalker.com/
http://www.magnitude.com/

Incomplete Types Compiler Warning

In order to prevent the possibility of memory leaks when using class templates such as
AutoPtr, AutoArrayPtr or AutoValueMap, a compiler warning will be generated
when they are instantiated on an incomplete type. If you encounter a compiler warning
about an incomplete type (the actual warning varies between compilers), simply
include the header file of the pre-declared class, and remove the pre-declaration. This
allows the compiler to have full access to the underlying class destructor of in the class
template AutoXXX destructor.

Example: Code That Causes an Incomplete Type Warning
namespace MyDriver
{

class MyClass1; // Pre-declaration of MyClass1
class MyClass2
{

public:
MyClass2 {}
~MyClass2 {}
private:
// when this is cleaned up, the destructor of
MyClass1 will not be called :-(
Simba::Support::AutoPtr<MyClass1> m_obj;

}

}

Example: Resolving an Incomplete Type Warning
//To resolve the issue, include the header file for
// MyClass1 and remove the forward declaration:
#include MyClass1.h
namespace MyDriver
{

class MyClass2
{

public:
MyClass2 {}
~MyClass2 {}
private:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
388

Testing your DSII

http://www.magnitude.com/

// when this is cleaned up, the destructor of
MyClass1 will be called :-)
Simba::Support::AutoPtr<MyClass1> m_obj;

}

}

Background on the Use of Incomplete Types

In C++, it is possible to pre-declare a class, then define pointer or reference to it. This
results in a pointer to an incomplete type. This is fine as long as the code does not
need to access any methods or attributes of the pre-defined class, including the
destructor. The C++ specification also allows you to delete the pointer to an
incomplete type. This may cause a problem, because the compiler does not know the
type of the referenced object, or how to call its destructor (it might not even have a
destructor). The compiler frees the memory of the object but cannot call its destructor
first. This could lead to memory leaks or other issues, such as a file remaining open.

The Simba SDK provides class templates such as AutoPtr, AutoArrayPtr or
AutoValueMap to help manage your dynamically created objects. These classes will
clean up an object when their instances are destroyed. However, if these class
templates are instantiated on an incomplete type, the compiler does not have access
to the underlying class’s destructor. Therefore, it cannot add a call to the destructor of
the underlying object when compiling the destructor of these class templates.s

Incorrect version of libc Library

When deploying a connector on AIX platforms, a supported version of the system
library libcmust be available on the machine. We recommend having the following
version of this library for each supported version of AIX:

AIX version

AIX 7.1 bos.rte.libc.7.2.0.2

AIX 6.1 bos.rte.libc.6.1.9.30

To download this library, see http://www-
01.ibm.com/support/docview.wss?uid=isg1fileset-870201775.

If this library does not exist on the deployment machine, the following errors may be
encountered:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
389

Testing your DSII

http://www-01.ibm.com/support/docview.wss?uid=isg1fileset-870201775
http://www-01.ibm.com/support/docview.wss?uid=isg1fileset-870201775
http://www.magnitude.com/

l [unixODBC][Driver Manager]Can't initiate unicode conversion
l [unixODBC][Driver Manager]Can't open lib <path to connector library>: file not
found

l [ISQL]ERROR: Could not SQLConnect

Error Messages Encountered During Development

The following table lists some of the error messages you may encounter during the
development and testing phases of your DSII. For a complete list of error codes and
messages, see the files in [INSTALL_
DIRECTORY]\DataAccessComponents\ErrorMessages\.

Error Message Meaning Solution

Out of Memory

The SQL Engine
did not have
enough memory to
complete the SQL
command.

If your SQL statement results in an
"Out of Memory" error, and you
are using the SQL Engine, you
may need to adjust how the
SQL Engine uses memory. To
resolve this error, try tuning the
memory strategy as described in
SQL Engine Memory
Management. In particular, see
the tip about DSI_MEM_
MANAGER_THRESHOLD_
PERCENT.

The license file <file>
could not be found.

The Simba.lic
license file is not in
the correct
directory, or you do
not have a valid
license.

Install the license file, or re-install
it in the correct location. For
information on installing the
license file, see .

SQLDriverConnect
returned: SQL_
ERROR=-1

The Driver
Manager cannot
find or load the
requested
connector’s DLL.

Make sure that your connector is
installed correctly and that the
DSN is correctly configured.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
390

Testing your DSII

http://www.magnitude.com/

Error Message Meaning Solution

Specified driver could
not be loaded.

The connector is
missing some
dependencies.

Another possibility
is that all libraries
have not been
compiled with the
same bitness.
Check that your
ICU, iODBC, and
your DSII libraries
are all the same
bitness.

Try listing the dynamic
dependencies of your connector
and ensuring all the dependencies
are available.

e.g.: ldd –d driver.so on Unix or
use Dependency Walker on
Windows.

Your evaluation period
has expired. Please
contact Simba
Technologies Inc. at
support@simba.com

Your license has
expired. Contact Simba for support.

Error file not found:
<file>

The error message
file is missing or
the configuration
value used to
locate the file was
not set.

Ensure the ErrorMessagesPath
configuration value exists and is
pointing at the correct directory
containing the error message files.

On Windows, this configuration is
in the registry at
HKLM/Software/Simba/Driver and
on other platforms it is found in the
simba.ini config file.

The error message
<message> could not
be found in the en-US
locale.

Same as above.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
391

Testing your DSII

http://www.magnitude.com/

Error Message Meaning Solution

Incomplete Type

A template class,
such as AutoPtr,
AutoArrayPtr or
AutoValueMap, is
used as a
reference to an
incomplete type.

See .

Enable Logging in the Data Engine

The Simba SDK provides logging capability that is specific to AETree and ETree
functionality. This logging is controlled separately from the other log functionality in the
Simba SDK, and isn't affected by settings such as LogFileSize parameter.

You can enable AETree and ETree logging using the DSIEXT_DATAENGINE_LOG_
AETREES and the DSIEXT_DATAENGINE_LOG_ETREE data engine properties.

Example:

To enable AETree logging, add this line to your connector, for example in your
DSIExtSqlDataEngine subclass.
SetProperty(DSIEXT_DATAENGINE_LOG_AETREES,
AttributeData::MakeNewUInt32AttributeData(0xF));

This setting will create a log file, AETree.log, in the path specified by the LogPath
parameter.

Related Topics

Statements

Using SQL Engine Properties

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
392

Testing your DSII

http://www.magnitude.com/

Contact Us

For more information or help using this product, please contact our Technical Support
staff. We welcome your questions, comments, and feature requests.

Note:

To help us assist you, prior to contacting Technical Support please prepare a
detailed summary of the Simba SDK version and development platform that
you are using.

You can contact Technical Support via the Magnitude Support Community at
www.magnitude.com.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
393

Contact Us

https://www.magnitude.com/
http://www.magnitude.com/

Third-Party Trademarks

Simba, the Simba logo, SimbaEngine, Simba SDK, and Simba Technologies are
registered trademarks of Simba Technologies Inc. in Canada, United States and/or
other countries. All other trademarks and/or servicemarks are the property of their
respective owners.

All other trademarks are trademarks of their respective owners.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
394

Third-Party Trademarks

http://www.magnitude.com/

Third Party Licenses

The licenses for the third-party libraries that are included in this product are listed
below.

ICU License - ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2014 International Business Machines Corporation and others

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, provided that the above copyright notice(s) and this
permission notice appear in all copies of the Software and that both the above
copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUTWARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THEWARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR
ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR
ANY DAMAGESWHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTIONWITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization of the copyright holder.

All trademarks and registered trademarks mentioned herein are the property of their
respective owners.

OpenSSL

Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.

1. Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
395

Third Party Licenses

http://www.magnitude.com/

2. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

3. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

4. All advertising materials mentioning features or use of this software must display
the following acknowledgment:

5. "This product includes software developed by the OpenSSL Project for use in the
OpenSSL Toolkit. (http://www.openssl.org/)"

6. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without prior written
permission. For written permission, please contact openssl-core@openssl.org.

7. Products derived from this software may not be called "OpenSSL" nor may
"OpenSSL" appear in their names without prior written permission of the
OpenSSL Project.

8. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project for use in
the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "AS IS" AND ANY
EXPRESSED OR IMPLIEDWARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIEDWARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL
PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANYWAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim Hudson
(tjh@cryptsoft.com).

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

All rights reserved.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
396

Third Party Licenses

http://www.openssl.org/
http://www.openssl.org/
http://www.magnitude.com/

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscape's SSL.

This library is free for commercial and non-commercial use as long as the following
conditions are adheared to. The following conditions apply to all code found in this
distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the SSL code. The
SSL documentation included with this distribution is covered by the same copyright
terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are not
to be removed. If this package is used in a product, Eric Young should be given
attribution as the author of the parts of the library used. This can be in the form of a
textual message at program startup or in documentation (online or textual) provided
with the package.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display
the following acknowledge:

4. "This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com)"

5. The word 'cryptographic' can be left out if the rouines from the library being used
are not cryptographic related :-).

6. If you include any Windows specific code (or a derivative thereof) from the apps
directory (application code) you must include an acknowledgment:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS
OR IMPLIEDWARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
397

Third Party Licenses

http://www.magnitude.com/

ANYWAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The license and distribution terms for any publicly available version or derivative of this
code cannot be changed. i.e. this code cannot simply be copied and put under another
distribution license [including the GNU Public License.]

Expat License

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUTWARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THEWARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NOINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTIONWITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Stringencoders License

Copyright 2005, 2006, 2007

Nick Galbreath -- nickg [at] modp [dot] com

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
398

Third Party Licenses

http://www.magnitude.com/

Neither the name of the modp.com nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIEDWARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIEDWARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANYWAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This is the standard "new" BSD license:

http://www.opensource.org/licenses/bsd-license.php

dtoa License

The author of this software is David M. Gay.

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for any purpose without
fee is hereby granted, provided that this entire notice is included in all copies of any
software which is or includes a copy or modification of this software and in all copies of
the supporting documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
IMPLIEDWARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT
MAKES ANY REPRESENTATION ORWARRANTY OF ANY KIND CONCERNING
THE MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE.

CityHash License

CityHash, by Geoff Pike and Jyrki Alakuijala

Copyright (c) 2011 Google, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
399

Third Party Licenses

http://www.magnitude.com/

without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUTWARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THEWARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTIONWITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

http:code.google.com/p/cityhash/

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
400

Third Party Licenses

../Trademarks/http:code.google.com/p/cityhash/
http://www.magnitude.com/

	Contents
	Introducing the Simba SDK
	Creating a Custom Connector with the Simba SDK
	Example - Build an ODBC Connector for a SQL-Capable Data Store
	Example - Build an ODBC Connector for a non-SQL-Capable Data Store
	Example - Build a Client/Server Solution
	Implementation Options
	Library Components
	Sample Connectors and Projects
	Building Blocks for a DSI Implementation
	Getting Started
	Frequently Asked Questions

	Core Features
	Fetching Metadata for Catalog Functions
	Adding Custom Metadata Columns
	Overriding the Value of Default Properties
	Implementing Logging
	Using SQL Engine Properties
	Adding Custom Connection and Statement Properties
	Handling Connections
	Creating and Using Dialogs
	Canceling Operations
	Handling Transactions
	Bulk Fetch in the C++ SDK
	Parsing ODBC and JDBC Escape Sequences
	Step 1: Implement Your Custom IReplacer
	Step 2: Create an Instance of ODBCEscaper
	Step 3: Ensure Additional Requirements are Met

	Native Syntax Queries
	Native Value Expressions

	Errors, Exceptions, and Warnings
	Handling Errors and Exceptions
	Posting Warning Messages
	Including Error Message Files
	Localizing Messages

	Multithreading
	Using the Thread Class (C++ only)
	Using the ThreadPool Class
	Asynchronous ODBC Support
	Critical Section Locks
	Concurrency Support

	API Overview
	DSI API
	DSI API Extensions
	API Overview
	Lifecycle of DSI Objects
	Working With the Java API

	Data Types
	SQL Data Types in the C++ SDK
	Date, Time and DateTime Types
	Example: Variable-Length Data

	SQL DataTypes in the Java SDK
	Interval Conversions
	Adding Custom SQLDataType
	ODBC Custom C Data Types

	Simba SQLEngine
	Simba SQLEngine Architecture
	Optimizing Queries with the Simba SQLEngine
	Collaborative Query Execution
	Statements
	Boolean
	Query Operations and Relational Expressions
	Values

	SQL Engine Memory Management
	Data Manipulation Language (DML)
	Data Definition Language (DDL)
	Add Additional Types (Optional)

	Support for Indexes
	Sample Index Implementation
	Custom Scalar and Aggregate Functions
	Stored Procedures
	Create Table As Select (CTAS)

	Specifications
	Supported Platforms
	Supported ODBC/SQL Functions
	Supported SQL Conformance Level

	Methods
	IStatement::ExecuteBatch()

	Compiling Your Connector
	Upgrading Your Makefile to 10.1
	C++ on Windows
	C# on Windows
	C# on Linux, Unix, and macOS
	Java on Windows
	C++ on Linux, Unix, and macOS

	Productizing Your Connector
	Packaging Your Connector
	Adding a DSN Configuration Dialog
	Rebranding Your Connector
	Using INI Files for Connector Configuration on Windows
	Logging to Event Tracing for Windows (ETW)

	Testing your DSII
	Testing On Windows
	Testing On Linux, Unix, and MacOS
	Driver Manager Encodings on Linux, Unix, and MacOS
	Solving Common Problems
	Error Messages Encountered During Development

	Contact Us
	Third-Party Trademarks
	Third Party Licenses

